Influence of heat treatment on the microstructures and mechanical properties of sand-cast Mg-4Y-2Nd-1Gd-0.4Zr magnesium alloy was investigated,and the tensile fracture mechanisms of the studied alloys under different ...Influence of heat treatment on the microstructures and mechanical properties of sand-cast Mg-4Y-2Nd-1Gd-0.4Zr magnesium alloy was investigated,and the tensile fracture mechanisms of the studied alloys under different conditions were also discussed.The results show that the optimum T4 and T6 heat treatment conditions for the as-cast Mg-4Y-2Nd-1Gd-0.4Zr alloy are 525°C,8 h and(525°C,8 h)+(225°C,16 h),respectively,with regard to the microstructure observation,DSC heating curve and mechanical properties.The hardness,yield strength,ultimate tensile strength and elongation of the Mg-4Y-2Nd-1Gd-0.4Zr alloy treated by optimum T6 heat treatment are HV91,180 MPa,297 MPa and 7.4%,respectively.Moreover,the Mg-4Y-2Nd-1Gd-0.4Zr alloys under different heat treatment conditions exhibit different tensile fracture modes.展开更多
Hot tearing is known as one of the most serious solidification defects commonly encountered during solidification. It is very important to study the solidification path of alloys. In the work, thermal analysis with co...Hot tearing is known as one of the most serious solidification defects commonly encountered during solidification. It is very important to study the solidification path of alloys. In the work, thermal analysis with cooling curve was used for the investigation of microstructure evolution with different Zn contents during solidification process of MgZn_xY_4Zr_(0.5) alloys. Thermal analysis results of MgY_4Zr_(0.5) alloys revealed one distinct phase precipitation: α-Mg. Three different phase peaks were detected in the Zn-containing alloys: α-Mg, Z-phase(Mg_(12)YZn) and W-phase(Mg_3 Y_2Zn_3). In addition, for the present MgZn_xY_4Zr_(0.5) alloys, the freezing ranges of these alloys from large to small were: MgZn_(1.5)Y_4Zr_(0.5)>MgZn)(3.0) Y)4Zr_(0.5)>MgZn0.5 Y4 Zr0.5>MgY_4Zr_(0.5). The effect of different contents of Zn(0, 0.5, 1.5, 3.0 wt.%) on hot tearing behavior of MgY_4Zr_(0.5) alloy was investigated using a constrained rod casting(CRC) apparatus equipped with a load cell and data acquisition system. The experimental results show that the addition of Zn element significantly increases hot tearing susceptibility(HTS) of the MgY_4Zr_(0.5) alloy due to its extended freezing range. Some free dendrite-like bumps and ruptured liquid films on the fracture surfaces were observed in all the fracture surfaces. These phenomena proved the fact that the hot tearing formation was caused by interdendritic separation due to lack of feeding at the end of solidification.展开更多
The microstructure, microhardness and tensile properties of laser additive manufactured (LAM) Ti?5Al?2Sn?2Zr?4Mo?4Cr alloy were investigated. The result shows that the microstructure evolution is strongly affected by ...The microstructure, microhardness and tensile properties of laser additive manufactured (LAM) Ti?5Al?2Sn?2Zr?4Mo?4Cr alloy were investigated. The result shows that the microstructure evolution is strongly affected by the thermal history of LAM process. Primary α (αp) with different morphologies, secondary α (αs) and martensite α' can be observed at different positions of the LAMed specimen. Annealing treatment can promote the precipitation of rib-like α phase or acicular α phase. As a result, it can increase or decrease the microhardness. The as-deposited L-direction and T-direction specimens contain the same phase constituent with different morphologies. The tensile properties of the as-deposited LAMed specimens are characterized of anisotropy. The L-direction specimen shows the character of low strength but high ductility when compared with the T-direction specimen. After annealing treatment, the strength of L-direction specimen increases significantly while the ductility reduces. The strength of the annealed T-direction specimen changes little, however, the ductility reduces nearly by 50%.展开更多
A new rare earth magnesium alloy(Mg-6 Zn-4 Sm-0.4 Zr, wt.%) was prepared by permanent mould casting. The microstructure and mechanical properties of the alloy sample in as-cast and various heat treatment situations we...A new rare earth magnesium alloy(Mg-6 Zn-4 Sm-0.4 Zr, wt.%) was prepared by permanent mould casting. The microstructure and mechanical properties of the alloy sample in as-cast and various heat treatment situations were characterized with an optical microscope(OM), X-ray diffractometer(XRD), scanning electron microscope(SEM) equipped with energy dispersive spectroscope(EDS), transmission electron microscope(TEM) and mechanical tests at room temperature, respectively. The experimental results show that the as-cast alloy mainly consists of α-Mg, eutectic Mg_2Zn_3, MgZnSm and Mg_(41)Sm_5. These eutectic phases with continuous or semicontinuous morphology principally distribute along grain boundaries. Almost all the eutectic compounds dissolve in α-Mg and the grains have no obvious growth trend after optimum solution treatment at 490 °C for 18 h. Meanwhile, the ultimate tensile strength(UTS) of 229 MPa and elongation(EL) to rupture of 9.78% can be achieved through the optimal solution treatment, which increase by 37 MPa and 57.74%, respectively, compared with that of the as-cast alloy. Further aging treatments at 200 °C for different durations lead to the conspicuous increment of mechanical properties and prominent age-hardening response. Peak-aged alloy(treated at 200 °C for 12 h) reveals better mechanical properties(UTS 258 MPa, EL 9.42%, hardness 73.4 HV) compared with the same alloy treated in other aging conditions, which is mainly ascribed to precipitated Mg_2Zn_3 and MgZn_2 phases. Fracture analysis demonstrates that the as-cast alloy belongs to inter-granular and cleavage fracture patterns, while the solutionized alloy(treated at 490 °C for 18 h) reveals trans-granular and quasi-cleavage fracture modes. For the peak-aged alloy, the fracture pattern obeys the mixture of trans-granular and cleavage modes.展开更多
The microstructures of an Mg-4Y-3Nd-0.5Zr alloy by differential pressure casting were investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and its tensile deformation b...The microstructures of an Mg-4Y-3Nd-0.5Zr alloy by differential pressure casting were investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and its tensile deformation behavior was measured using a Gleeble1500D themo-simulation machine in the temperature range of 200 to 400 ℃ at initial strain rates of 5×10^-4 to 10^-1 s^-1. Results show that the as-cast microstructure consists of primary α-Mg phase and bone-shaped Mg5RE eutectic phase distributed along the grain boundary. The eutectic phase is dissolved into the matrix after solution treatment and subsequently precipitates during peak aging. Tensile deformation tests show that the strain rate has little effect on stress under 300 ℃. Tensile stress decreases with an increase in temperature and the higher strain rate leads to an increase in stress above 300 ℃. The fracture mechanism exhibits a mixed quasi-cleavage fracture at 200 ℃, while the fracture above 300 ℃ is a ductile fracture. The dimples are melted at 400 ℃ with the lowest strain rate of 10^-4 s^-1.展开更多
As greater attention is paid to energy consumption and global warming, magnetic refrigeration (MR) technologies based on the magneto-caloric effect (MCE) have been developed. Systems based on MR are expected to be...As greater attention is paid to energy consumption and global warming, magnetic refrigeration (MR) technologies based on the magneto-caloric effect (MCE) have been developed. Systems based on MR are expected to be more compact, energy efficient, and environmentally safe compared with traditional vapor-cycle refrigeration technologies .展开更多
基金Project(0502)supported by the Aerospace Science and Technology Innovation Fund of China Aerospace Science and Technology CorporationProject(2007CB613701)supported by the National Basic Research Program of ChinaProject(2009AA033501)supported by the National High-tech Research and Development Program of China
文摘Influence of heat treatment on the microstructures and mechanical properties of sand-cast Mg-4Y-2Nd-1Gd-0.4Zr magnesium alloy was investigated,and the tensile fracture mechanisms of the studied alloys under different conditions were also discussed.The results show that the optimum T4 and T6 heat treatment conditions for the as-cast Mg-4Y-2Nd-1Gd-0.4Zr alloy are 525°C,8 h and(525°C,8 h)+(225°C,16 h),respectively,with regard to the microstructure observation,DSC heating curve and mechanical properties.The hardness,yield strength,ultimate tensile strength and elongation of the Mg-4Y-2Nd-1Gd-0.4Zr alloy treated by optimum T6 heat treatment are HV91,180 MPa,297 MPa and 7.4%,respectively.Moreover,the Mg-4Y-2Nd-1Gd-0.4Zr alloys under different heat treatment conditions exhibit different tensile fracture modes.
基金financially supported by the National Natural Sciences Foundation of China(No.51504153,No.51571145)the General Project of Scientific Research of the Education Department of Liaoning Province(No.L2015397)
文摘Hot tearing is known as one of the most serious solidification defects commonly encountered during solidification. It is very important to study the solidification path of alloys. In the work, thermal analysis with cooling curve was used for the investigation of microstructure evolution with different Zn contents during solidification process of MgZn_xY_4Zr_(0.5) alloys. Thermal analysis results of MgY_4Zr_(0.5) alloys revealed one distinct phase precipitation: α-Mg. Three different phase peaks were detected in the Zn-containing alloys: α-Mg, Z-phase(Mg_(12)YZn) and W-phase(Mg_3 Y_2Zn_3). In addition, for the present MgZn_xY_4Zr_(0.5) alloys, the freezing ranges of these alloys from large to small were: MgZn_(1.5)Y_4Zr_(0.5)>MgZn)(3.0) Y)4Zr_(0.5)>MgZn0.5 Y4 Zr0.5>MgY_4Zr_(0.5). The effect of different contents of Zn(0, 0.5, 1.5, 3.0 wt.%) on hot tearing behavior of MgY_4Zr_(0.5) alloy was investigated using a constrained rod casting(CRC) apparatus equipped with a load cell and data acquisition system. The experimental results show that the addition of Zn element significantly increases hot tearing susceptibility(HTS) of the MgY_4Zr_(0.5) alloy due to its extended freezing range. Some free dendrite-like bumps and ruptured liquid films on the fracture surfaces were observed in all the fracture surfaces. These phenomena proved the fact that the hot tearing formation was caused by interdendritic separation due to lack of feeding at the end of solidification.
基金Projects(51105311,51475380)supported by the National Natural Science Foundation of ChinaProject(2013AA031103)supported by the National High-Tech Research and Development Program of China
文摘The microstructure, microhardness and tensile properties of laser additive manufactured (LAM) Ti?5Al?2Sn?2Zr?4Mo?4Cr alloy were investigated. The result shows that the microstructure evolution is strongly affected by the thermal history of LAM process. Primary α (αp) with different morphologies, secondary α (αs) and martensite α' can be observed at different positions of the LAMed specimen. Annealing treatment can promote the precipitation of rib-like α phase or acicular α phase. As a result, it can increase or decrease the microhardness. The as-deposited L-direction and T-direction specimens contain the same phase constituent with different morphologies. The tensile properties of the as-deposited LAMed specimens are characterized of anisotropy. The L-direction specimen shows the character of low strength but high ductility when compared with the T-direction specimen. After annealing treatment, the strength of L-direction specimen increases significantly while the ductility reduces. The strength of the annealed T-direction specimen changes little, however, the ductility reduces nearly by 50%.
基金financially supported by the National Nature Science Foundations of China(51464032)National Basic Research Program of China(Grant No.2010CB635106)
文摘A new rare earth magnesium alloy(Mg-6 Zn-4 Sm-0.4 Zr, wt.%) was prepared by permanent mould casting. The microstructure and mechanical properties of the alloy sample in as-cast and various heat treatment situations were characterized with an optical microscope(OM), X-ray diffractometer(XRD), scanning electron microscope(SEM) equipped with energy dispersive spectroscope(EDS), transmission electron microscope(TEM) and mechanical tests at room temperature, respectively. The experimental results show that the as-cast alloy mainly consists of α-Mg, eutectic Mg_2Zn_3, MgZnSm and Mg_(41)Sm_5. These eutectic phases with continuous or semicontinuous morphology principally distribute along grain boundaries. Almost all the eutectic compounds dissolve in α-Mg and the grains have no obvious growth trend after optimum solution treatment at 490 °C for 18 h. Meanwhile, the ultimate tensile strength(UTS) of 229 MPa and elongation(EL) to rupture of 9.78% can be achieved through the optimal solution treatment, which increase by 37 MPa and 57.74%, respectively, compared with that of the as-cast alloy. Further aging treatments at 200 °C for different durations lead to the conspicuous increment of mechanical properties and prominent age-hardening response. Peak-aged alloy(treated at 200 °C for 12 h) reveals better mechanical properties(UTS 258 MPa, EL 9.42%, hardness 73.4 HV) compared with the same alloy treated in other aging conditions, which is mainly ascribed to precipitated Mg_2Zn_3 and MgZn_2 phases. Fracture analysis demonstrates that the as-cast alloy belongs to inter-granular and cleavage fracture patterns, while the solutionized alloy(treated at 490 °C for 18 h) reveals trans-granular and quasi-cleavage fracture modes. For the peak-aged alloy, the fracture pattern obeys the mixture of trans-granular and cleavage modes.
基金supported by the Ministry of Science and Technology of China through Grant 2009GJB 2001.1
文摘The microstructures of an Mg-4Y-3Nd-0.5Zr alloy by differential pressure casting were investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and its tensile deformation behavior was measured using a Gleeble1500D themo-simulation machine in the temperature range of 200 to 400 ℃ at initial strain rates of 5×10^-4 to 10^-1 s^-1. Results show that the as-cast microstructure consists of primary α-Mg phase and bone-shaped Mg5RE eutectic phase distributed along the grain boundary. The eutectic phase is dissolved into the matrix after solution treatment and subsequently precipitates during peak aging. Tensile deformation tests show that the strain rate has little effect on stress under 300 ℃. Tensile stress decreases with an increase in temperature and the higher strain rate leads to an increase in stress above 300 ℃. The fracture mechanism exhibits a mixed quasi-cleavage fracture at 200 ℃, while the fracture above 300 ℃ is a ductile fracture. The dimples are melted at 400 ℃ with the lowest strain rate of 10^-4 s^-1.
基金supported by the National Natural Science Foundation of China(Grant Nos.51271103,and 51671119)
文摘As greater attention is paid to energy consumption and global warming, magnetic refrigeration (MR) technologies based on the magneto-caloric effect (MCE) have been developed. Systems based on MR are expected to be more compact, energy efficient, and environmentally safe compared with traditional vapor-cycle refrigeration technologies .