The electrochemical corrosion mechanisms of Mg alloys were extensively studied in previous investigations of different chemical com-positions,modified surface states and various electrolyte conditions.However,recent r...The electrochemical corrosion mechanisms of Mg alloys were extensively studied in previous investigations of different chemical com-positions,modified surface states and various electrolyte conditions.However,recent research focused on the active state of Mg dissolution,leading to unresolved effects of secondary phases adjacent to a stableα-solid solution passive layer.The present study investigates the fundamental electrochemical corrosion mechanisms of three different Laves phases with varying phase morphologies and phase fractions in the passive state of Mg-Al-Ca alloys.The microstructure was characterized by(transmission-)electron microscopy and synchrotron-based transmission X-ray microscopy.The electrochemical corrosion resistance was determined with a standard three-electrode setup and advanced in-situ flow cell measurements.A new electrochemical activity sequence(C15>C36>α-Mg>C14)was obtained,as a result of a stable passive layer formation on theα-solid solution.Furthermore,nm-scale Mg-rich precipitates were identified within the Laves phases,which tend to inhibit the corrosion kinetics.展开更多
Mechanical properties and electronic structure of MgCu2, Mg2 Ca and MgZn2 phases were investigated by means of first principles calculations from CASTEP program based on density functional theory(DFT). The calculate...Mechanical properties and electronic structure of MgCu2, Mg2 Ca and MgZn2 phases were investigated by means of first principles calculations from CASTEP program based on density functional theory(DFT). The calculated lattice parameters are in good agreement with the experimental and literature values. The calculated heat of formation and cohesive energies showed that MgCu2 has the strongest alloying ability and structural stability. Elastic constants of MgCu2, Mg2 Ca and MgZn2 were calculated, and the bulk moduli, shear moduli, elastic moduli and Poisson ratio were derived. The calculated results show that MgCu2, Mg2 Ca and MgZn2 are all ductile phases. Among the three phases, MgCu2 has the strongest stiffness and the plasticity of MgZn2 phase is the best. Melting points of the three phases were predicted using cohesive energy and elastic constants. Density of states(DOS), Mulliken population, electron occupation number and charge density difference were discussed. Finally, Debye temperature was calculated and discussed.展开更多
Ti-Cr- and Ti-Mn-based alloys were prepared to be low- and high-pressure stage metals for a double-stage super-high-pressure metal hydride hydrogen compressor. Their crystallographic characteristics and hydrogen stora...Ti-Cr- and Ti-Mn-based alloys were prepared to be low- and high-pressure stage metals for a double-stage super-high-pressure metal hydride hydrogen compressor. Their crystallographic characteristics and hydrogen storage properties were investigated. The alloy pair Ti0.9Zr0.1Mn1.4- Cr0.35V0.2Fe0.05/TiCr1.55Mn0.2Fe0.2 was optimized based on the comprehensive performance of the studied alloys. The product hydrogen with a pressure of 100 MPa could be produced from 4 MPa feed gas when hot oil was used as a heat reservoir.展开更多
The activation behaviors and hydrogen storage properties of the Laves phase Ti1-xZrx(Mn0.5Cr0.5)2 (x=0, 0.1, 0.2, 0.32, 0.5) alloys were investigated by the pressure-composition-temperature (P-C-T) measurements. All t...The activation behaviors and hydrogen storage properties of the Laves phase Ti1-xZrx(Mn0.5Cr0.5)2 (x=0, 0.1, 0.2, 0.32, 0.5) alloys were investigated by the pressure-composition-temperature (P-C-T) measurements. All the studied alloys show the single C14-type Laves phase structure based on the XRD data. Except for the alloys with very low Zr content of x=0 and x=0.1, all these alloys can be fully activated. The P-C isotherms of the activated alloys show that, the introduction of Zr induces the decrease of the equilibrium pressures and the steeper plateaus. As the x increases, the maximum hydrogen absorption also increases, whereas the desorption of hydrogen decreases. These two effects result in a maximum reversible hydrogen storage capacity of H/M=3.03 for the alloy at x=0.32. Furthermore, the well-defined plateau associated with the smallest hysteresis also appears at x=0.32.展开更多
Ternary Laves phases with transition metals and aluminium were overviewed with respect to their use for structural high temperature applications. The relation between constitution, phase stability, crystal structure a...Ternary Laves phases with transition metals and aluminium were overviewed with respect to their use for structural high temperature applications. The relation between constitution, phase stability, crystal structure and basic mechanical properties was discussed. The crystal structure-hexagonal C14 structure or cubic C15 structure-is a function of atomic radii and valence electron concentration. A strong positive correlation of basic mechanical properties-hardness, yield stress-with the sublimation energy of the phases was found. The brittle to ductile transition temperature was observed at about 60% of the melting temperature. The regarded ternary Laves phases allow alloying to form stable equilibria with the less hard and brittle B2 aluminides. Advantageous examples are alloys of type NbNiAl NiAl, TaNiAl NiAl, and TaFeAl FeAl. Multiphase NiAl Ta Cr alloys are regarded as promising for structural high temperature applications and have been selected for a materials development which aims at applications in gas turbines at temperatures above those of Ni base superalloys, such alloy can be prepared by ingot metallurgy and powder metallurgy and hot forming is possible. Characteristic data were presented with respect to mechanical behaviour. The alloys showed a high thermoshock resistance in spite of the comparatively high brittle to ductile transition temperature. The prospects of alloy development were discussed.展开更多
The infiltration casting method is widely employed for the preparation of ex-situ composite materials.However,the production of composite materials using this method must necessitates a comprehensive understanding of ...The infiltration casting method is widely employed for the preparation of ex-situ composite materials.However,the production of composite materials using this method must necessitates a comprehensive understanding of the wettability and interface characteristics between the reinforcing phase and the bulk metallic glasses(BMGs).This work optimized the composition of Zr-based BMGs through microalloying methods,resulting in a new set of Zr-based BMGs with excellent glass-forming ability.Wetting experiments between the Zr-based BMGs melts and W substrates were conducted using the traditional sessile drop method,and the interfaces were characterized utilizing a scanning electron microscope(SEM)equipped with energy dispersive X-ray spectroscopy(EDS).The work demonstrates that the microalloying method substantially enhances the wettability of the Zr-based BMGs melt.Additionally,the incorporation of Nb element impedes the formation of W-Zr phases,but the introduction of Nb element does not alter the extent of interdiffusion between the constituent elements of the amorphous matrix and W element,indicating that the influence of Nb element on the diffusion of individual elements is minute.展开更多
Molecular dynamics simulations are used to investigate the stabilities of C15 Laves phase structures subjected to temperature and point defects. The simulations based on different empirical potentials show that the bu...Molecular dynamics simulations are used to investigate the stabilities of C15 Laves phase structures subjected to temperature and point defects. The simulations based on different empirical potentials show that the bulk perfect C15 Laves phase appears to be stable under a critical temperature in a range from 350 K to 450 K, beyond which it becomes disordered and experiences an abrupt decrement of elastic modulus. In the presence of both vacancy and self-interstitial, the bulk C15 Laves phase becomes unstable at room temperature and prefers to transform into an imperfect body centered cubic(BCC)structure containing free vacancies or vacancy clusters. When a C15 cluster is embedded in BCC iron, the annihilation of interstitials occurs due to the presence of the vacancy, while it exhibits a phase transformation into a(1/2) 111 dislocation loop due to the presence of the self-interstitial.展开更多
Precipitation habits plays a decisive role in strengthening materials,especially for Mg alloys the non-basal plane precipitation is necessary but very limited.Generally,the precipitates would nucleate and grow up in a...Precipitation habits plays a decisive role in strengthening materials,especially for Mg alloys the non-basal plane precipitation is necessary but very limited.Generally,the precipitates would nucleate and grow up in a specific habit plane owing to the constraint of free-energy minimization of the system.Herein,in an aged ultralight Mg-Li-Zn alloy,we confirmed that the precipitates dominated by C15 Laves structure could form in a variety of habit planes,to generate three forms of strengthening-phases,i.e.,precipitate-rod,precipitate-lath,and precipitate-plate.Among which,the precipitate-plates are on basal plane as usually but precipitate-rods/laths are on non-basal plane,and such non-basal precipitates would transform into the basal(Mg,Li)Zn_(2)Laves structure with prolonged aging.These findings are interesting to understand the precipitation behaviors of multi-domain Laves structures in hexagonal close-packed crystals,and expected to provide a guidance for designing ultralight high-strength Mg-Li based alloys via precipitation hardening on the non-basal planes.展开更多
The morphology,size,and distribution of Laves phases have important influences on the mechanical properties of laser-repaired Inconel 718(IN718)superalloy.Due to the deterioration of the substrate zone,the Laves phase...The morphology,size,and distribution of Laves phases have important influences on the mechanical properties of laser-repaired Inconel 718(IN718)superalloy.Due to the deterioration of the substrate zone,the Laves phase in the laser cladding zone of IN718 superalloy cannot be optimized by a hightemperature solution treatment.In this study,an in situ laser heat-treatment method was proposed to regulate the morphology and size of the Laves phase in the laser cladding zone of IN718 superalloy without impacting the substrate zone.In the in situ laser heat-treatment process,a laser was used to heat previously deposited layers with optimized manufacturing parameters.A thermocouple and an infrared camera were used to analyze thermal cycles and real-time temperature fields,respectively.Microstructures and micro-segregations were observed by optical microscopy,scanning electron microscopy,and electron probe microanalysis.It was found that the in situ laser heat treatment effectively changed the morphology and size of the Laves phase,which was transformed from a continuous striplike shape to a discrete granular shape.The effective temperature range and duration were the two main factors influencing the Laves phase during the in situ laser heat-treatment process.The effective temperature range was determined by the laser linear energy density,and the peak temperature increased with the increase of the linear energy density.In addition,the temperature amplitude could be reduced by simultaneously increasing the laser power and the scanning velocity.Finally,a flow diagram was developed based on the in situ laser heat-treatment process,and the deposition of a single-walled sample with fine and granular Laves phases was detected.展开更多
Laves phase NbCr2 alloys with a composition of Nb-66.7Cr (molar fraction, %) were prepared by mechanical alloying and hot pressing. The microstructures and properties of the Laves phase NbCr2 alloys, prepared from ele...Laves phase NbCr2 alloys with a composition of Nb-66.7Cr (molar fraction, %) were prepared by mechanical alloying and hot pressing. The microstructures and properties of the Laves phase NbCr2 alloys, prepared from elemental niobium and chromium powders under various ball milling time by hot pressing at 1 250 ℃ for 0.5 h, were investigated. The results indicate that if the ball milling time is longer than 40 h, the synthesizing reaction of Laves phase NbCr2 can be accomplished much sufficiently. Then the nearly full-dense Laves phase NbCr2 alloys can be prepared by hot pressing from ball milled powders with more than 40 h. The hot pressing sample with homogeneous and fine microstructure made from 40 h ball milled powders has the optimum microstructure and properties. It has a relative density of 98.1%, Vickers hardness of 11.4 GPa, compress strength of 1 981 MPa and fracture toughness of 4.82 MPa·m1/2. The effect of fine grain toughening is fully realized.展开更多
The high temperature oxidation behaviors of Ti Cr alloys containing 18% ~ 35% Cr with Laves phase TiCr 2 were investigated at 650 ~ 780?℃ for exposure up to 104?h. The results reveal that chromium content has criti...The high temperature oxidation behaviors of Ti Cr alloys containing 18% ~ 35% Cr with Laves phase TiCr 2 were investigated at 650 ~ 780?℃ for exposure up to 104?h. The results reveal that chromium content has critical significance to the oxidation resistance of the alloys. The scaling rates of the alloys with less than 21% Cr are higher than those measured for pure titanium, but for the alloys with more than 26% Cr their scaling rate is lowered by 1~2 times, under the same oxidizing conditions. Both an external and an internal oxidation layers were observed. The oxidation resistance enhancement by chromium alloying is contributed to the formation of a continuous and compact chromic oxide interleaf in the scale. Oxidation temperature significantly affects the scaling rates of Ti Cr alloys, and the mass gain is doubled with a temperature change from 650?℃ to 700?℃ or from 700?℃ to 780?℃, for the same exposure duration. TiCr 2 shows no negative influence on the high temperature oxidation resistance of the alloys.展开更多
One kind of Mg3.5Zn0.6Gd-based alloy strengthened with quasicrystals was designed,and the effect of alloying elements on microstructure and mechanical properties of as-cast Mg-Zn-Gd alloy at room temperature and eleva...One kind of Mg3.5Zn0.6Gd-based alloy strengthened with quasicrystals was designed,and the effect of alloying elements on microstructure and mechanical properties of as-cast Mg-Zn-Gd alloy at room temperature and elevated temperatures were studied. The results indicate that MgZnCu Laves phase,which coexists with quasicrystal at grain boundary,emerges with the addition of copper element in Mg-Zn-Gd alloy. The strength of alloys exhibits the parabola curve with the increase of copper content. The alloy with 1.5%(mole fraction) Cu shows better mechanical properties at room temperature:tensile strength 176 MPa,yield strength 176 MPa and elongation 6.5%. The existence of MgZnCu Laves phase can effectively improve the heat resistance and elevated temperature properties of the alloy. The alloy with 1.5% Cu has better mechanical properties at 200 ℃:tensile strength 130 MPa and elongation 18.5%. The creep test of the alloys at 200 ℃ and 50 MPa for 102 h indicates that Mg3.5Zn0.6Gd alloy reinforced with quasicrystal has better creep properties than AE42,which can be further improved with the introduction of Laves phase in the alloy.展开更多
The synthesis and magnetostriction of PrxTb1-x.Fe2, PrxTb1-x Fe2BO2 and PrxTb1-x(Fe0.6Co0.4)2 alloys were investigated in this study. The addition of boron or cobalt atom in PrxTb1-xFe2 could effectively prevent the...The synthesis and magnetostriction of PrxTb1-x.Fe2, PrxTb1-x Fe2BO2 and PrxTb1-x(Fe0.6Co0.4)2 alloys were investigated in this study. The addition of boron or cobalt atom in PrxTb1-xFe2 could effectively prevent the formation of non-cubic phases, and Pr concentration limit was successfully increased from 0.2 to 0.4. X-ray step scanning for the PrxTb1-xFe2BO2 and PrxTb1-x(Fe0.6Co0.4)2 alloys showed that PrFe2 possessed a large spontaneous magnetostriction λ1111.展开更多
HfV 2, like most Laves phase alloys, is brittle at low temperatures, but when it is alloyed with Nb, substantial deformation is possible—by twinning. These twins are the standard fcc type twins, lying on (111) planes...HfV 2, like most Laves phase alloys, is brittle at low temperatures, but when it is alloyed with Nb, substantial deformation is possible—by twinning. These twins are the standard fcc type twins, lying on (111) planes with shears in the 〈112〉 direction. HREM of the twins shows that they have the same macroscopic shear as twins in fcc crystals, which means that the twinning must be accompanied by atomic shuffles or synchroshear in order to preserve the ordered structure. Given the nature of the material, it was concluded that the mechanism is synchroshear. The HfV 2+Nb alloys have been deformed over a wide temperature range, from 4 K to 1 300 K. An anomaly in the temperature dependence of the flow stress was observed at about 77 K, where there is a precipitous dip in the flow stress. The dip at 77 K has been attributed to an increased ease of twinning (which is taken to be strong evidence against atomic shuffles).展开更多
For the development of high-strength Mg alloys,active use of Laves phases such as C14-type Mg_(2)Yb and Mg_(2)Ca is strongly expected.However,the brittleness of the Laves phases is the biggest obstacle to it.We first ...For the development of high-strength Mg alloys,active use of Laves phases such as C14-type Mg_(2)Yb and Mg_(2)Ca is strongly expected.However,the brittleness of the Laves phases is the biggest obstacle to it.We first found that kink-band formation can be induced in directionally solidified Mg/Mg_(2)Yb and Mg/Mg_(2)Ca eutectic lamellar alloys when a stress is applied parallel to the lamellar interface,leading to a high yield stress accompanied with ductility.That is,microstructural control can induce a new deformation mode that is not activated in the constituent phases,thereby inducing ductility.It was clarified that the geometric relationship between the operative slip plane in the constituent phases and the lamellar interface,and the microstructural features that provide kink-band nucleation sites are important factors for controlling kink-band formation.The obtained results show a possibility to open the new door for the development of novel high-strength structural material using the kink bands.展开更多
基金the financial support of the Deutsche Forschungsgemeinschaft(DFG)of the Collaborative Research Center(CRC)1394“Structural and Chemical Atomic Complexity-from defect phase diagrams to material properties”–project ID 409476157the Excellence Strategy of the Federal Government and the L?nder project IDG:(DE-82)EXS-SF-OPSF596。
文摘The electrochemical corrosion mechanisms of Mg alloys were extensively studied in previous investigations of different chemical com-positions,modified surface states and various electrolyte conditions.However,recent research focused on the active state of Mg dissolution,leading to unresolved effects of secondary phases adjacent to a stableα-solid solution passive layer.The present study investigates the fundamental electrochemical corrosion mechanisms of three different Laves phases with varying phase morphologies and phase fractions in the passive state of Mg-Al-Ca alloys.The microstructure was characterized by(transmission-)electron microscopy and synchrotron-based transmission X-ray microscopy.The electrochemical corrosion resistance was determined with a standard three-electrode setup and advanced in-situ flow cell measurements.A new electrochemical activity sequence(C15>C36>α-Mg>C14)was obtained,as a result of a stable passive layer formation on theα-solid solution.Furthermore,nm-scale Mg-rich precipitates were identified within the Laves phases,which tend to inhibit the corrosion kinetics.
基金Project(2013201018)supported by Scientific and Technological Project of Liaoning Province,China
文摘Mechanical properties and electronic structure of MgCu2, Mg2 Ca and MgZn2 phases were investigated by means of first principles calculations from CASTEP program based on density functional theory(DFT). The calculated lattice parameters are in good agreement with the experimental and literature values. The calculated heat of formation and cohesive energies showed that MgCu2 has the strongest alloying ability and structural stability. Elastic constants of MgCu2, Mg2 Ca and MgZn2 were calculated, and the bulk moduli, shear moduli, elastic moduli and Poisson ratio were derived. The calculated results show that MgCu2, Mg2 Ca and MgZn2 are all ductile phases. Among the three phases, MgCu2 has the strongest stiffness and the plasticity of MgZn2 phase is the best. Melting points of the three phases were predicted using cohesive energy and elastic constants. Density of states(DOS), Mulliken population, electron occupation number and charge density difference were discussed. Finally, Debye temperature was calculated and discussed.
文摘Ti-Cr- and Ti-Mn-based alloys were prepared to be low- and high-pressure stage metals for a double-stage super-high-pressure metal hydride hydrogen compressor. Their crystallographic characteristics and hydrogen storage properties were investigated. The alloy pair Ti0.9Zr0.1Mn1.4- Cr0.35V0.2Fe0.05/TiCr1.55Mn0.2Fe0.2 was optimized based on the comprehensive performance of the studied alloys. The product hydrogen with a pressure of 100 MPa could be produced from 4 MPa feed gas when hot oil was used as a heat reservoir.
基金This work was supported by the National Natural Science Foundation of China (No.50371086).
文摘The activation behaviors and hydrogen storage properties of the Laves phase Ti1-xZrx(Mn0.5Cr0.5)2 (x=0, 0.1, 0.2, 0.32, 0.5) alloys were investigated by the pressure-composition-temperature (P-C-T) measurements. All the studied alloys show the single C14-type Laves phase structure based on the XRD data. Except for the alloys with very low Zr content of x=0 and x=0.1, all these alloys can be fully activated. The P-C isotherms of the activated alloys show that, the introduction of Zr induces the decrease of the equilibrium pressures and the steeper plateaus. As the x increases, the maximum hydrogen absorption also increases, whereas the desorption of hydrogen decreases. These two effects result in a maximum reversible hydrogen storage capacity of H/M=3.03 for the alloy at x=0.32. Furthermore, the well-defined plateau associated with the smallest hysteresis also appears at x=0.32.
文摘Ternary Laves phases with transition metals and aluminium were overviewed with respect to their use for structural high temperature applications. The relation between constitution, phase stability, crystal structure and basic mechanical properties was discussed. The crystal structure-hexagonal C14 structure or cubic C15 structure-is a function of atomic radii and valence electron concentration. A strong positive correlation of basic mechanical properties-hardness, yield stress-with the sublimation energy of the phases was found. The brittle to ductile transition temperature was observed at about 60% of the melting temperature. The regarded ternary Laves phases allow alloying to form stable equilibria with the less hard and brittle B2 aluminides. Advantageous examples are alloys of type NbNiAl NiAl, TaNiAl NiAl, and TaFeAl FeAl. Multiphase NiAl Ta Cr alloys are regarded as promising for structural high temperature applications and have been selected for a materials development which aims at applications in gas turbines at temperatures above those of Ni base superalloys, such alloy can be prepared by ingot metallurgy and powder metallurgy and hot forming is possible. Characteristic data were presented with respect to mechanical behaviour. The alloys showed a high thermoshock resistance in spite of the comparatively high brittle to ductile transition temperature. The prospects of alloy development were discussed.
基金the support of the China Manned Space Engineering(YYMT1201-EXP08)。
文摘The infiltration casting method is widely employed for the preparation of ex-situ composite materials.However,the production of composite materials using this method must necessitates a comprehensive understanding of the wettability and interface characteristics between the reinforcing phase and the bulk metallic glasses(BMGs).This work optimized the composition of Zr-based BMGs through microalloying methods,resulting in a new set of Zr-based BMGs with excellent glass-forming ability.Wetting experiments between the Zr-based BMGs melts and W substrates were conducted using the traditional sessile drop method,and the interfaces were characterized utilizing a scanning electron microscope(SEM)equipped with energy dispersive X-ray spectroscopy(EDS).The work demonstrates that the microalloying method substantially enhances the wettability of the Zr-based BMGs melt.Additionally,the incorporation of Nb element impedes the formation of W-Zr phases,but the introduction of Nb element does not alter the extent of interdiffusion between the constituent elements of the amorphous matrix and W element,indicating that the influence of Nb element on the diffusion of individual elements is minute.
基金supported by the National Natural Science Foundation of China(Grant Nos.11675230 and 11375242)Canada’s Natural Sciences and Engineering Research Council NSERC Discovery GrantCanada Foundation for Innovation CFI
文摘Molecular dynamics simulations are used to investigate the stabilities of C15 Laves phase structures subjected to temperature and point defects. The simulations based on different empirical potentials show that the bulk perfect C15 Laves phase appears to be stable under a critical temperature in a range from 350 K to 450 K, beyond which it becomes disordered and experiences an abrupt decrement of elastic modulus. In the presence of both vacancy and self-interstitial, the bulk C15 Laves phase becomes unstable at room temperature and prefers to transform into an imperfect body centered cubic(BCC)structure containing free vacancies or vacancy clusters. When a C15 cluster is embedded in BCC iron, the annihilation of interstitials occurs due to the presence of the vacancy, while it exhibits a phase transformation into a(1/2) 111 dislocation loop due to the presence of the self-interstitial.
基金the National Natural Science Foundation of China(Grant No.51525101,No.51971053,No.52101129)the Project of Promoting Talents in Liaoning Province(No.XLYC1808038)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.N2002018)the Project funded by China Postdoctoral Science Foundation(2020M670774)。
文摘Precipitation habits plays a decisive role in strengthening materials,especially for Mg alloys the non-basal plane precipitation is necessary but very limited.Generally,the precipitates would nucleate and grow up in a specific habit plane owing to the constraint of free-energy minimization of the system.Herein,in an aged ultralight Mg-Li-Zn alloy,we confirmed that the precipitates dominated by C15 Laves structure could form in a variety of habit planes,to generate three forms of strengthening-phases,i.e.,precipitate-rod,precipitate-lath,and precipitate-plate.Among which,the precipitate-plates are on basal plane as usually but precipitate-rods/laths are on non-basal plane,and such non-basal precipitates would transform into the basal(Mg,Li)Zn_(2)Laves structure with prolonged aging.These findings are interesting to understand the precipitation behaviors of multi-domain Laves structures in hexagonal close-packed crystals,and expected to provide a guidance for designing ultralight high-strength Mg-Li based alloys via precipitation hardening on the non-basal planes.
基金supported by Aero Engine Corporation of China Xi’an Aero-Engine Ltd.(N2018KD040252)the fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University(2020-TS-03)。
文摘The morphology,size,and distribution of Laves phases have important influences on the mechanical properties of laser-repaired Inconel 718(IN718)superalloy.Due to the deterioration of the substrate zone,the Laves phase in the laser cladding zone of IN718 superalloy cannot be optimized by a hightemperature solution treatment.In this study,an in situ laser heat-treatment method was proposed to regulate the morphology and size of the Laves phase in the laser cladding zone of IN718 superalloy without impacting the substrate zone.In the in situ laser heat-treatment process,a laser was used to heat previously deposited layers with optimized manufacturing parameters.A thermocouple and an infrared camera were used to analyze thermal cycles and real-time temperature fields,respectively.Microstructures and micro-segregations were observed by optical microscopy,scanning electron microscopy,and electron probe microanalysis.It was found that the in situ laser heat treatment effectively changed the morphology and size of the Laves phase,which was transformed from a continuous striplike shape to a discrete granular shape.The effective temperature range and duration were the two main factors influencing the Laves phase during the in situ laser heat-treatment process.The effective temperature range was determined by the laser linear energy density,and the peak temperature increased with the increase of the linear energy density.In addition,the temperature amplitude could be reduced by simultaneously increasing the laser power and the scanning velocity.Finally,a flow diagram was developed based on the in situ laser heat-treatment process,and the deposition of a single-walled sample with fine and granular Laves phases was detected.
基金Project(50474009) supported by the National Natural Science Foundation of ChinaProject(05G56003) supported by the Aviation Science Foundation of ChinaProject(ZX200401001) supported by the Natural Science Foundation of Jiangxi Province,China
文摘Laves phase NbCr2 alloys with a composition of Nb-66.7Cr (molar fraction, %) were prepared by mechanical alloying and hot pressing. The microstructures and properties of the Laves phase NbCr2 alloys, prepared from elemental niobium and chromium powders under various ball milling time by hot pressing at 1 250 ℃ for 0.5 h, were investigated. The results indicate that if the ball milling time is longer than 40 h, the synthesizing reaction of Laves phase NbCr2 can be accomplished much sufficiently. Then the nearly full-dense Laves phase NbCr2 alloys can be prepared by hot pressing from ball milled powders with more than 40 h. The hot pressing sample with homogeneous and fine microstructure made from 40 h ball milled powders has the optimum microstructure and properties. It has a relative density of 98.1%, Vickers hardness of 11.4 GPa, compress strength of 1 981 MPa and fracture toughness of 4.82 MPa·m1/2. The effect of fine grain toughening is fully realized.
文摘The high temperature oxidation behaviors of Ti Cr alloys containing 18% ~ 35% Cr with Laves phase TiCr 2 were investigated at 650 ~ 780?℃ for exposure up to 104?h. The results reveal that chromium content has critical significance to the oxidation resistance of the alloys. The scaling rates of the alloys with less than 21% Cr are higher than those measured for pure titanium, but for the alloys with more than 26% Cr their scaling rate is lowered by 1~2 times, under the same oxidizing conditions. Both an external and an internal oxidation layers were observed. The oxidation resistance enhancement by chromium alloying is contributed to the formation of a continuous and compact chromic oxide interleaf in the scale. Oxidation temperature significantly affects the scaling rates of Ti Cr alloys, and the mass gain is doubled with a temperature change from 650?℃ to 700?℃ or from 700?℃ to 780?℃, for the same exposure duration. TiCr 2 shows no negative influence on the high temperature oxidation resistance of the alloys.
基金Project(50501013) supported by the National Natural Science Foundation of ChinaProject(05JC14023) supported by the Science and Technology Committee of Shanghai City, China
文摘One kind of Mg3.5Zn0.6Gd-based alloy strengthened with quasicrystals was designed,and the effect of alloying elements on microstructure and mechanical properties of as-cast Mg-Zn-Gd alloy at room temperature and elevated temperatures were studied. The results indicate that MgZnCu Laves phase,which coexists with quasicrystal at grain boundary,emerges with the addition of copper element in Mg-Zn-Gd alloy. The strength of alloys exhibits the parabola curve with the increase of copper content. The alloy with 1.5%(mole fraction) Cu shows better mechanical properties at room temperature:tensile strength 176 MPa,yield strength 176 MPa and elongation 6.5%. The existence of MgZnCu Laves phase can effectively improve the heat resistance and elevated temperature properties of the alloy. The alloy with 1.5% Cu has better mechanical properties at 200 ℃:tensile strength 130 MPa and elongation 18.5%. The creep test of the alloys at 200 ℃ and 50 MPa for 102 h indicates that Mg3.5Zn0.6Gd alloy reinforced with quasicrystal has better creep properties than AE42,which can be further improved with the introduction of Laves phase in the alloy.
基金Project supported by the Natural Science Foundation of Hebei Province (E2006000063)the Foundation of Hebei Educa-tion Department (2005216)
文摘The synthesis and magnetostriction of PrxTb1-x.Fe2, PrxTb1-x Fe2BO2 and PrxTb1-x(Fe0.6Co0.4)2 alloys were investigated in this study. The addition of boron or cobalt atom in PrxTb1-xFe2 could effectively prevent the formation of non-cubic phases, and Pr concentration limit was successfully increased from 0.2 to 0.4. X-ray step scanning for the PrxTb1-xFe2BO2 and PrxTb1-x(Fe0.6Co0.4)2 alloys showed that PrFe2 possessed a large spontaneous magnetostriction λ1111.
文摘HfV 2, like most Laves phase alloys, is brittle at low temperatures, but when it is alloyed with Nb, substantial deformation is possible—by twinning. These twins are the standard fcc type twins, lying on (111) planes with shears in the 〈112〉 direction. HREM of the twins shows that they have the same macroscopic shear as twins in fcc crystals, which means that the twinning must be accompanied by atomic shuffles or synchroshear in order to preserve the ordered structure. Given the nature of the material, it was concluded that the mechanism is synchroshear. The HfV 2+Nb alloys have been deformed over a wide temperature range, from 4 K to 1 300 K. An anomaly in the temperature dependence of the flow stress was observed at about 77 K, where there is a precipitous dip in the flow stress. The dip at 77 K has been attributed to an increased ease of twinning (which is taken to be strong evidence against atomic shuffles).
基金supported by Japan Society for the Promotion of Science (JSPS) KAKENHI for Scientific Research on Innovative Areas "MFS Materials Science" (Grant Numbers: JP18H05478 and JP18H05475)partly supported by the Light Metals Educational Foundation of Japan。
文摘For the development of high-strength Mg alloys,active use of Laves phases such as C14-type Mg_(2)Yb and Mg_(2)Ca is strongly expected.However,the brittleness of the Laves phases is the biggest obstacle to it.We first found that kink-band formation can be induced in directionally solidified Mg/Mg_(2)Yb and Mg/Mg_(2)Ca eutectic lamellar alloys when a stress is applied parallel to the lamellar interface,leading to a high yield stress accompanied with ductility.That is,microstructural control can induce a new deformation mode that is not activated in the constituent phases,thereby inducing ductility.It was clarified that the geometric relationship between the operative slip plane in the constituent phases and the lamellar interface,and the microstructural features that provide kink-band nucleation sites are important factors for controlling kink-band formation.The obtained results show a possibility to open the new door for the development of novel high-strength structural material using the kink bands.