Bulk metallic glasses (BMG) show higher strength and lower Young’s modulus than SUS 316L stainless steel and Ti-6Al-4V alloys. This study aimed to investigate the reaction of Zr-based BMG sub-periosteally implanted o...Bulk metallic glasses (BMG) show higher strength and lower Young’s modulus than SUS 316L stainless steel and Ti-6Al-4V alloys. This study aimed to investigate the reaction of Zr-based BMG sub-periosteally implanted on the surface of the rat femur, thereby evaluate the possibility of the BMG as biomaterials for osteosynthetic devices. Zr<sub>65</sub>Al<sub>7.5</sub>Ni<sub>10</sub>Cu<sub>17.5 </sub>BMG ribbons with 10 mm length, 2 mm width and 0.5 mm thickness were implanted sub-periosteally on the femur surface in three male Wistar rats for 6 weeks. Systemic effects were evaluated by measuring Cu and Ni levels in the blood, and local effects were evaluated by the histological observation of the surrounding soft tissues in contact with the BMG. The reaction of the surface of the BMG was examined with scanning electron microscopy. No increase of Cu and Ni levels in the blood was recognized. In the scanning electron microscopy observation, spherical deposits which were considered as sodium chloride crystals were observed. Neither breakage nor pitting corrosion was noted. BMG will be a promising metallic biomaterial for osteosynthetic device that must be removed.展开更多
The glass-forming ability and mechanical properties of metallic glasses and their composites are well known to be sensitive to the preparation conditions and are highly deteriorated by industrial preparing conditions ...The glass-forming ability and mechanical properties of metallic glasses and their composites are well known to be sensitive to the preparation conditions and are highly deteriorated by industrial preparing conditions such as low-purity raw materials and low vacuum.Here,we showed that a series of in-situ bulk metallic glass composites(BMGCs)which exhibit excellent ductility and segmental work hardening were successfully developed utilizing a high vacuum high-pressure die casting(HV-HPDC)technology along with industrial-grade raw materials.The tensile properties of these BMGCs are systematically investigated and correlated with the alloy microstructure.As compared with the copper mold suction casting method,the volume fraction difference of the dendrite phase for the BMGCs with the same composition is not significant when fabricated by the HV-HPDC,whereas the size of theβ-phase is generally larger.Insitu BMGCs with the composition of Ti_(48)Zr_(20)(V_(12/17)Cu_(5/17))19 Be 13 obtained by the HV-HPDC process show ductility up to 11.3%under tension at room temperature and exhibit a certain amount of work hardening.Two conditions need to be met to enable the BMGCs,which are prepared by vacuum die-casting to retain favorable ductility:(1)The volume fraction ofβphase stays below 62%±2%;(2)The equiaxed crystals with a more uniform size in the range of 5-10μm.Meanwhile,the results of the present study provided guidance for developing BMGCs with good ductile properties under industrial conditions.展开更多
Thanks to their outstanding mechanical properties,Bulk Metallic Glasses(BMGs)are new alternatives to traditional crystalline metals for mechanical and micromechanical applications including power transmission.However,...Thanks to their outstanding mechanical properties,Bulk Metallic Glasses(BMGs)are new alternatives to traditional crystalline metals for mechanical and micromechanical applications including power transmission.However,the tribological properties of BMGs are still poorly understood,mostly because their amorphous nature induces counter intuitive responses to friction and wear.In the present study,four different BMGs(Cu_(47)Zr_(46)Al_(7),Zr_(46)Cu_(45)Al_(7)Nb_(2),Zr_(60)Cu_(28)Al_(12),and Zr_(61)Cu_(25)Al_(12)Ti_(2))underwent ball-on-disc friction tests against 100Cr6 steel balls(American Iron and Steel Institute(AISI)52100)at different relative humidities(RHs)ranging from 20%to 80%.Controlling humidity enabled to observe a high repeatability of the friction and wear responses of the BMG.Interestingly,the friction coefficient decreased by a factor of 2 when the humidity was increased,and the wear rate of BMGs was particularly low thanks to a 3rd-body tribolayer that forms on the BMG surface,composed of oxidized wear particles originating from the ball.The morphology of this tribolayer is highly correlated to humidity.The study also identifies how the tribolayer is built up from the initial contact until the steady state is achieved.展开更多
Plastic deformation behaviors of Zr65Al10Ni10Cu15 and Zr52.5Al10Ni10Cu15Be12.5 bulk metallic glasses (BMGs) are studied by using the depth-sensing nanoindentation, microindentation and uniaxial compression. The Be-con...Plastic deformation behaviors of Zr65Al10Ni10Cu15 and Zr52.5Al10Ni10Cu15Be12.5 bulk metallic glasses (BMGs) are studied by using the depth-sensing nanoindentation, microindentation and uniaxial compression. The Be-containing BMG exhibits a signifi- cantly improved overall plastic strain compared with the Be-free alloy during compressive tests. Both BMGs show a loading-rate-dependent serrated flow during nanoindentation measurements, but the Be-containing alloy exhibits a much lower critical loading rate for the disappearance of the serration than the Be-free BMG. The shear band patterns de- veloped during plastic deformation are investigated by microindentation technique, wherein much higher shear band density is found in the Be-containing alloy than in the Be-free alloy, indicating an easier nucleation of shear bands in the former BMG. The dif- ference in the plastic deformation behavior of the two BMGs can be explained by a free volume model.展开更多
The growth kinetics of intermetallic compound layer between molten In-Sn alloy and Cu40Zr44Al8Ag8 bulk metallic glass substrate was examined by solid state isothermal aging at the temperature range between 333 and 393...The growth kinetics of intermetallic compound layer between molten In-Sn alloy and Cu40Zr44Al8Ag8 bulk metallic glass substrate was examined by solid state isothermal aging at the temperature range between 333 and 393 K.The aged samples were characterized by scanning electron microscopy and energy dispersive spectrometry.It is found that the intermetallic compound layer is composed of Zr,Cu and Sn.The layer growth of the intermetallic compound is mainly controlled by a diffusion mechanism over the temperature range and the value of the time exponent is approximately 0.5.The apparent activation energy for the growth of total intermetallic compound layers is 98.35 kJ /mol calculated by the Arrhenius equation.展开更多
The tribological behavior of a Zr-based bulk metallic glass(BMG) was investigated using pin-on-disk sliding measurements in two different environments,i.e.,air and argon,against an yttria-stabilized zirconia counter...The tribological behavior of a Zr-based bulk metallic glass(BMG) was investigated using pin-on-disk sliding measurements in two different environments,i.e.,air and argon,against an yttria-stabilized zirconia counterface.It was found that the wear of the Zr-based BMG was reduced by more than 45% due to the removal of oxygen from the test environment at two different loads,i.e.,16 N and 23 N.The wear pins were examined using X-ray diffractometry,differential scanning calorimetry,scanning electron microscopy and optical surface profilometry.A number of abrasive particles and grooves presented on the worn surface of the pin tested in air,while a relatively smooth worn surface was observed in the specimens tested in argon.The wear mechanism of the pin worn in air was dominated by abrasive wear compared with an adhesive wear controlled process in the tests performed in argon.展开更多
Surfaces of three types of CuZr-based bulk metallic glasses (BMGs) were modified by laser surface treatment (LST), and the influence of the treatment on structure and mechanical properties of these alloys was inve...Surfaces of three types of CuZr-based bulk metallic glasses (BMGs) were modified by laser surface treatment (LST), and the influence of the treatment on structure and mechanical properties of these alloys was investigated. The phase structure of as-cast and laser-treated samples was characterized by XRD and the morphology of the alloys after fracture was examined by SEM. The compressive plasticity of treated Cu47.sZr47.sAI5 and Cu46.sZr47.sAlsCo~ BMGs can be improved from 0.5% to 2.0% and from 1.2% to 5.7% respectively compared with the as-cast ones, while (Cu0.55Zr0.40Ala05)99Er~ BMG shows insignificant change of plasticity. The improvement in plasticity is attributed to induced crystallization of B2 CuZr phase in the treated sur- face zone of selected metallic glasses.展开更多
The tungsten particles reinforced Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit 1 alloy) bulk metallic glass composites (BMGCs) were prepared by the melt infiltrating casting method with the infiltrating time of 1, 5 and 10 min, ...The tungsten particles reinforced Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit 1 alloy) bulk metallic glass composites (BMGCs) were prepared by the melt infiltrating casting method with the infiltrating time of 1, 5 and 10 min, respectively. The changes of interfacial reaction and compression properties of the bulk metallic glass composites with different infiltrating times were studied. Results show that with the increase of infiltrating time, tiny nanocrystals are generated at the interfacial boundary of tungsten particles and the amorphous matrix, and the size of tiny crystals increases with the infiltrating time. When the infiltrating time is 10 min, polygonal crystals with a larger size are also generated within the amorphous matrix. The compressive strength of the composites also increases with the infiltrating time. When the infiltrating time is 10 min, the compressive strength of the composite reaches 2,030 MPa and the compression strain is 44%. The fracture morphology of the composite materials is in a vein-like pattern and the melting phenomenon is found on the fracture surface. In addition, the density of the shear bands during the compressive tests of the composite materials increases with the infiltrating time.展开更多
An outer ring of 29320 self-aliging roller bearing was used in an experimental study on the casting of Zr_(41)Ti_(14)Cu_(12.5)Ni_(10)Be_(22.5) amorphous alloy.Numerical simulations of mold filling and solidification p...An outer ring of 29320 self-aliging roller bearing was used in an experimental study on the casting of Zr_(41)Ti_(14)Cu_(12.5)Ni_(10)Be_(22.5) amorphous alloy.Numerical simulations of mold filling and solidification processes were carried out to determine the velocity fields and temperature fields of the alloy melt during mold filling process as well as the temperature fields and temperature gradient fields in the course of the solidification.According to the results,a cast with a complete shape can be obtained at 1200℃under the condition that the cooling rate is greater than the critical cooling rate.The ring-shaped part with a thickness of 25 mm,an equivalent diameter of 22 mm,and a mass of 1.32 kg was prepared by gravity casting in a copper mold.X-ray diffraction and differential scanning calorimetry data revealed that the produced cast had the amorphous structure.展开更多
The(Zr_(0.55)Al_(0.1)Ni_(0.05)Cu_(0.3))_(100-x)Ti_x alloys were prepared using an in-situ suck-casting method in a copper mold. The effects of Ti addition on the microstructure, mechanical and corrosion pr...The(Zr_(0.55)Al_(0.1)Ni_(0.05)Cu_(0.3))_(100-x)Ti_x alloys were prepared using an in-situ suck-casting method in a copper mold. The effects of Ti addition on the microstructure, mechanical and corrosion properties of the(Zr_(0.55)Al_(0.1)Ni_(0.05)Cu_(0.3))_(100-x)Ti_x alloys were investigated by X-ray diffraction, scanning electron microscopy, compressive tests and corrosion tests. It has been found that the addition of Ti higher than 4%(mole fraction) causes the formation of many crystalline phases in the alloy. The alloys with 1%-3% Ti display an obvious yield stage on their compressive stress-strain curves. An appropriate addition of Ti can improve the strength and ductility of the alloys. All the alloys have high corrosion resistance in 1 mol/L Na OH solution, and are corroded in 1 mol/L HCl solution. However, the appropriate addition of Ti can significantly improve the corrosion resistance of the alloys in HCl solution.展开更多
The glassy rods were successfully fabricated in the Cu-Zr-Ti-In alloy system by casting into a copper mold. The value of ATx reaches a maximum of 66 K for the BMG CusoZraTTi8In5 alloy. The reasons for enhancing glass ...The glassy rods were successfully fabricated in the Cu-Zr-Ti-In alloy system by casting into a copper mold. The value of ATx reaches a maximum of 66 K for the BMG CusoZraTTi8In5 alloy. The reasons for enhancing glass forming ability of Cu-based BMGs with the addition of indium were discussed from atomic size and thermodynamics. Alternatively, the BMG Cu52Zra7Ti8In3 exhibits the highest compressive strength (1981 MPa) and the best plasticity among glassy Cu55-xZra7TisInx (x_〈5). The total plastic deformation of Cu52Zr37TisIn3 before fracture approaches 1.2%.展开更多
The corrosion behaviors of Ti-based and Zr-based amorphous alloys and their corresponding crystallized alloys were studied by electrochemical methods. It is found that the corrosion potentials of Zr-based amorphous al...The corrosion behaviors of Ti-based and Zr-based amorphous alloys and their corresponding crystallized alloys were studied by electrochemical methods. It is found that the corrosion potentials of Zr-based amorphous alloy and its corresponding crystalline counterpart are both lower than those of the Ti-based amorphous alloy in the 1 mol/L H2SO4 solution. In the 3.5% NaCl solution,Zr-based crystallized alloy exhibits the lowest corrosion potential among the experimental samples. No passivation is observed in the corrosion process for the Zr-based crystalline alloy. However, Zr- and Ti-based amorphous alloys both exhibit passivation characteristics. EIS measurements indicate the amorphous alloys exhibit better corrosion resistance than the crystallized one in the NaCl solution. Surface analysis shows that both amorphous alloys in the NaCl solution are eroded by pitting corrosion. In the H2SO4 solution, all the alloys display similar behaviors and their surfaces can mostly keep intact except for some cracks on the corroded surface at local region.展开更多
Effect of network structure on plasticity and fracture mode of Zr?Al?Ni?Cu bulk metallic glasses (BMGs) was investigated. The microstructures of transversal and longitudinal sections were exposed by chemical etch...Effect of network structure on plasticity and fracture mode of Zr?Al?Ni?Cu bulk metallic glasses (BMGs) was investigated. The microstructures of transversal and longitudinal sections were exposed by chemical etching and observed by scanning electron microscopy (SEM). The mechanical properties were examined by room-temperature uniaxial compression test. The results show that both plasticity and fracture mode are significantly affected by the network structure and the alteration occurs when the size of the network structure reaches up to a critical value. When the cell size (dc) of the network structure is ~3μm, Zr-based BMGs characterize in plasticity that decreases with increasingdc. The fracture mode gradually transforms from single 45° shear fracture to double 45° shear fracture and then cleavage fracture with increasingdc. In addition, the mechanisms of the transition of the plasticity and the fracture mode for these Zr-based BMGs are also discussed.展开更多
Room-temperature mechanical properties of Cu50Zr40Ti10-xNix(0≤x≤4,mole fraction,%) bulk metallic glasses (BMG) with aspect ratios in the range of 1:1-2.5:1 and loading rates in the range of1×10^-5-1×...Room-temperature mechanical properties of Cu50Zr40Ti10-xNix(0≤x≤4,mole fraction,%) bulk metallic glasses (BMG) with aspect ratios in the range of 1:1-2.5:1 and loading rates in the range of1×10^-5-1×10^-2s^-1were systematically investigated by room-temperatureuniaxialcompression test.In the condition of an aspect ratio of 1:1, the superplasticity can be clearly observed for Cu50Zr40Ti10BMG when the loading rate is1×10^-4s^-1, while for Cu50Zr40Ti10-xNix(x=1-3, mole fraction, %) BMGs when the loading rate is1×10^-2s^-1. The plastic strain (εp), yielding strength (σy) and fracture strength (σf) of the studied Cu-based BMGs significantly depend on the aspect ratio and the loading rate. In addition, theσyof the studied Cu-based BMGs with an aspect ratio of 1:1 is close to the σfof those with the other aspect ratios when the loading rate is1×10^-2s^-1. The mechanism for the mechanical response to the loading rate and the aspect ratiowas also discussed.展开更多
Quasi-static and high strain rate mechanical behavior of the Zr_ 1.25Ti_ 13.75Ni_ 10Cu_ 12.5Be_ 22.5 bulk metallic glass was determined covering strain rates from 1.02×10 -4s -1 to 3.258×103s -1. By use ...Quasi-static and high strain rate mechanical behavior of the Zr_ 1.25Ti_ 13.75Ni_ 10Cu_ 12.5Be_ 22.5 bulk metallic glass was determined covering strain rates from 1.02×10 -4s -1 to 3.258×103s -1. By use of split hopkinson pressure bar(SHPB) equipment, it is found that the alloy fractures in the high strain rate period with a strength well below that of its quasi-static counterpart and thus a strain rate induced embrittlement happens. Considering the glassy nature of the alloy and with careful analysis of the fracture morphology, dynamic damage accumulated in the high speed deformation period is suggested to be the reason for this embrittlement.展开更多
Dynamic strength behavior of Zr51Ti5NiloCu25A19 bulk metallic glass (BMG) up to 66 GPa was investigated in a series of plate impact shock-release and shock-reload experiments. Particle velocity profiles measured at ...Dynamic strength behavior of Zr51Ti5NiloCu25A19 bulk metallic glass (BMG) up to 66 GPa was investigated in a series of plate impact shock-release and shock-reload experiments. Particle velocity profiles measured at the sample/LiF window interface were used to estimate the shear stress, shear modulus, and yield stress in shocked BMG. Beyond confirm- ing the previously reported strain-softening of shear stress during the shock loading process for BMGs, it is also shown that the softened Zr-BMG still has a high shear modulus and can support large yield stress when released or reloaded from the shocked state, and both the shear modulus and the yield stress appear as strain-hardening behaviors. The work provides a much clearer picture of the strength behavior of BMGs under shock loading, which is useful to comprehensively understand the plastic deformation mechanisms of BMGs.展开更多
Bulk metallic glass(BMG) rods Fe71Mo5-xNbxP12C10B2(x=1,2,3,4 and 5) with diameter of 1 or 2 mm were synthesized by copper mold casting.The effects of Nb substitution for Mo on the structure,thermal and mechanical ...Bulk metallic glass(BMG) rods Fe71Mo5-xNbxP12C10B2(x=1,2,3,4 and 5) with diameter of 1 or 2 mm were synthesized by copper mold casting.The effects of Nb substitution for Mo on the structure,thermal and mechanical properties of Fe71Mo5-xNbxP12C10B2 alloys were studied by X-ray diffraction,differential scanning calorimetry and compressive testing.The results show that the substitution of Nb for Mo leads to a decreased glass forming ability,but with plasticity of 1.0%,the fracture strength of Fe71Mo2Nb3P12C10B2 alloy increases up to 4.0 GPa.The improvement of the fracture strength is discussed in terms of the enhancement of atomic bonding nature and the favorite formation of a network-like structure due to the substitution of Nb for Mo.展开更多
The split Hopkinson pressure bar (SHPB) was used to determine the dynamic compressive strength of the high-strength Zr38Ti17Cu10.5Co12Be22.5 bulk metallic glass at strain rate on the order of 102 s^-1. It is shown t...The split Hopkinson pressure bar (SHPB) was used to determine the dynamic compressive strength of the high-strength Zr38Ti17Cu10.5Co12Be22.5 bulk metallic glass at strain rate on the order of 102 s^-1. It is shown that at high strain rates beyond about 1 000 s^-1, uniform deformation within the metallic glass specimen could not be achieved and dispersion in the transmitted pulse can lead to discrepancies in measuring the dynamic failure strength of the present Zr-based bulk metallic glass. Based on these reasons, a copper insert was placed between the strike bar and the input bar to obtain reliable and consistent experimental data for testing of the Zr38Ti17Cu10.5Co12Be22.5 bulk metallic glass using the SHPB. Negative strain rate sensitivity was found in the present Zr-based bulk metallic glass.展开更多
A novel Ti/Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 composite was successfully prepared by infiltrating the melt into sintered Ti preform. It shows that the introduction of Ti particles into the composite results in an increase...A novel Ti/Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 composite was successfully prepared by infiltrating the melt into sintered Ti preform. It shows that the introduction of Ti particles into the composite results in an increase in elastic strain to 3% and an enhancement of the strength up to 2.1 GPa. High specific strength has been obtained because of the decrease in density of the composite. It is suggested that an improvement in the mechanical properties of the composite may be attributed to the generation of multiple shear bands and some deformation in the Ti particles.展开更多
In this paper,the effects of different strain rate(1.10-5 s-1,5.10-5 s-1,1.10-4 s-1,5.10-4 s-1,1.10-3 s-1)and aspect ratio(1:1,1.5:1,2:1,2.5:1,3:1)on mechanical properties of Zr-based metallic glasses at room temperat...In this paper,the effects of different strain rate(1.10-5 s-1,5.10-5 s-1,1.10-4 s-1,5.10-4 s-1,1.10-3 s-1)and aspect ratio(1:1,1.5:1,2:1,2.5:1,3:1)on mechanical properties of Zr-based metallic glasses at room temperature were investigated.The results indicate that as the strain rate increases,the plastic strain and compressive strength of the specimens gradually decrease.The specimen with the strain rate of 1.10-5 s-1 exhibits the higher plastic strain of 10.25%,compressive strength of 2002 MPa and fracture strength of 1999 MPa.In addition,accompanied with the increase in aspect ratio,the plastic strain of the specimens declines from 25.42%to 1.97%,meanwhile,the compressive strength and fracture strength of the specimens also present declining trend.展开更多
文摘Bulk metallic glasses (BMG) show higher strength and lower Young’s modulus than SUS 316L stainless steel and Ti-6Al-4V alloys. This study aimed to investigate the reaction of Zr-based BMG sub-periosteally implanted on the surface of the rat femur, thereby evaluate the possibility of the BMG as biomaterials for osteosynthetic devices. Zr<sub>65</sub>Al<sub>7.5</sub>Ni<sub>10</sub>Cu<sub>17.5 </sub>BMG ribbons with 10 mm length, 2 mm width and 0.5 mm thickness were implanted sub-periosteally on the femur surface in three male Wistar rats for 6 weeks. Systemic effects were evaluated by measuring Cu and Ni levels in the blood, and local effects were evaluated by the histological observation of the surrounding soft tissues in contact with the BMG. The reaction of the surface of the BMG was examined with scanning electron microscopy. No increase of Cu and Ni levels in the blood was recognized. In the scanning electron microscopy observation, spherical deposits which were considered as sodium chloride crystals were observed. Neither breakage nor pitting corrosion was noted. BMG will be a promising metallic biomaterial for osteosynthetic device that must be removed.
基金supported by the National Key Research and Development Plan(Grant Nos.2018YFA0703603,2021YFA0716302)Guangdong Major Project of Basic and Applied Basic Research,China(Grant Nos.2019B030302010,2020B1515120092)+2 种基金Guangdong Basic and Applied Basic Research Foundation,China(Grant Nos.2020B1515120092,2019B030302010)the National Natural Science Foundation of China(Grant Nos.52192602,52192603,51971092,11790291,and 61888102)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB30000000).
文摘The glass-forming ability and mechanical properties of metallic glasses and their composites are well known to be sensitive to the preparation conditions and are highly deteriorated by industrial preparing conditions such as low-purity raw materials and low vacuum.Here,we showed that a series of in-situ bulk metallic glass composites(BMGCs)which exhibit excellent ductility and segmental work hardening were successfully developed utilizing a high vacuum high-pressure die casting(HV-HPDC)technology along with industrial-grade raw materials.The tensile properties of these BMGCs are systematically investigated and correlated with the alloy microstructure.As compared with the copper mold suction casting method,the volume fraction difference of the dendrite phase for the BMGCs with the same composition is not significant when fabricated by the HV-HPDC,whereas the size of theβ-phase is generally larger.Insitu BMGCs with the composition of Ti_(48)Zr_(20)(V_(12/17)Cu_(5/17))19 Be 13 obtained by the HV-HPDC process show ductility up to 11.3%under tension at room temperature and exhibit a certain amount of work hardening.Two conditions need to be met to enable the BMGCs,which are prepared by vacuum die-casting to retain favorable ductility:(1)The volume fraction ofβphase stays below 62%±2%;(2)The equiaxed crystals with a more uniform size in the range of 5-10μm.Meanwhile,the results of the present study provided guidance for developing BMGCs with good ductile properties under industrial conditions.
基金supported by the EUR EIPHI Graduate School(ANR-17-EURE-0002)The authors are thankful for the financial support provided by the French National Research Agency(ANR)(ANR-19-CE08-0015)。
文摘Thanks to their outstanding mechanical properties,Bulk Metallic Glasses(BMGs)are new alternatives to traditional crystalline metals for mechanical and micromechanical applications including power transmission.However,the tribological properties of BMGs are still poorly understood,mostly because their amorphous nature induces counter intuitive responses to friction and wear.In the present study,four different BMGs(Cu_(47)Zr_(46)Al_(7),Zr_(46)Cu_(45)Al_(7)Nb_(2),Zr_(60)Cu_(28)Al_(12),and Zr_(61)Cu_(25)Al_(12)Ti_(2))underwent ball-on-disc friction tests against 100Cr6 steel balls(American Iron and Steel Institute(AISI)52100)at different relative humidities(RHs)ranging from 20%to 80%.Controlling humidity enabled to observe a high repeatability of the friction and wear responses of the BMG.Interestingly,the friction coefficient decreased by a factor of 2 when the humidity was increased,and the wear rate of BMGs was particularly low thanks to a 3rd-body tribolayer that forms on the BMG surface,composed of oxidized wear particles originating from the ball.The morphology of this tribolayer is highly correlated to humidity.The study also identifies how the tribolayer is built up from the initial contact until the steady state is achieved.
基金supported by the National Natural Science Foundation of China(Grant Nos.10372103,10572142 and 50571109).
文摘Plastic deformation behaviors of Zr65Al10Ni10Cu15 and Zr52.5Al10Ni10Cu15Be12.5 bulk metallic glasses (BMGs) are studied by using the depth-sensing nanoindentation, microindentation and uniaxial compression. The Be-containing BMG exhibits a signifi- cantly improved overall plastic strain compared with the Be-free alloy during compressive tests. Both BMGs show a loading-rate-dependent serrated flow during nanoindentation measurements, but the Be-containing alloy exhibits a much lower critical loading rate for the disappearance of the serration than the Be-free BMG. The shear band patterns de- veloped during plastic deformation are investigated by microindentation technique, wherein much higher shear band density is found in the Be-containing alloy than in the Be-free alloy, indicating an easier nucleation of shear bands in the former BMG. The dif- ference in the plastic deformation behavior of the two BMGs can be explained by a free volume model.
基金Project (2011CB606301) supported by the National Basic Research Program of ChinaProject (20212339) supported by the Doctor Startup Foundation Program of Shenyang University,China
文摘The growth kinetics of intermetallic compound layer between molten In-Sn alloy and Cu40Zr44Al8Ag8 bulk metallic glass substrate was examined by solid state isothermal aging at the temperature range between 333 and 393 K.The aged samples were characterized by scanning electron microscopy and energy dispersive spectrometry.It is found that the intermetallic compound layer is composed of Zr,Cu and Sn.The layer growth of the intermetallic compound is mainly controlled by a diffusion mechanism over the temperature range and the value of the time exponent is approximately 0.5.The apparent activation energy for the growth of total intermetallic compound layers is 98.35 kJ /mol calculated by the Arrhenius equation.
基金Project(DE-FG02-07ER46392) supported by U.S.Department of Energy,Office of Basic Energy ScienceProject(2011JQ002) supported by the Fundamental Research Funds for the Central Universities,ChinaProject supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University,China
文摘The tribological behavior of a Zr-based bulk metallic glass(BMG) was investigated using pin-on-disk sliding measurements in two different environments,i.e.,air and argon,against an yttria-stabilized zirconia counterface.It was found that the wear of the Zr-based BMG was reduced by more than 45% due to the removal of oxygen from the test environment at two different loads,i.e.,16 N and 23 N.The wear pins were examined using X-ray diffractometry,differential scanning calorimetry,scanning electron microscopy and optical surface profilometry.A number of abrasive particles and grooves presented on the worn surface of the pin tested in air,while a relatively smooth worn surface was observed in the specimens tested in argon.The wear mechanism of the pin worn in air was dominated by abrasive wear compared with an adhesive wear controlled process in the tests performed in argon.
基金supported by the National Natural Science Foundation of China (Grant Nos.51071008 and 51131002)the Program for New Century Excellent Talents in the University
文摘Surfaces of three types of CuZr-based bulk metallic glasses (BMGs) were modified by laser surface treatment (LST), and the influence of the treatment on structure and mechanical properties of these alloys was investigated. The phase structure of as-cast and laser-treated samples was characterized by XRD and the morphology of the alloys after fracture was examined by SEM. The compressive plasticity of treated Cu47.sZr47.sAI5 and Cu46.sZr47.sAlsCo~ BMGs can be improved from 0.5% to 2.0% and from 1.2% to 5.7% respectively compared with the as-cast ones, while (Cu0.55Zr0.40Ala05)99Er~ BMG shows insignificant change of plasticity. The improvement in plasticity is attributed to induced crystallization of B2 CuZr phase in the treated sur- face zone of selected metallic glasses.
基金This work was supported by the Liaoning Joint Fund of NSFC(No.U1908219).
文摘The tungsten particles reinforced Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit 1 alloy) bulk metallic glass composites (BMGCs) were prepared by the melt infiltrating casting method with the infiltrating time of 1, 5 and 10 min, respectively. The changes of interfacial reaction and compression properties of the bulk metallic glass composites with different infiltrating times were studied. Results show that with the increase of infiltrating time, tiny nanocrystals are generated at the interfacial boundary of tungsten particles and the amorphous matrix, and the size of tiny crystals increases with the infiltrating time. When the infiltrating time is 10 min, polygonal crystals with a larger size are also generated within the amorphous matrix. The compressive strength of the composites also increases with the infiltrating time. When the infiltrating time is 10 min, the compressive strength of the composite reaches 2,030 MPa and the compression strain is 44%. The fracture morphology of the composite materials is in a vein-like pattern and the melting phenomenon is found on the fracture surface. In addition, the density of the shear bands during the compressive tests of the composite materials increases with the infiltrating time.
基金the National Natural Science Foundation of China(Nos.52071278,51827801)the National Key Research and Development Program of China(No.2018YFA0703603)the Hebei Normal University of Science&Technology,China(No.2021YB012).
文摘An outer ring of 29320 self-aliging roller bearing was used in an experimental study on the casting of Zr_(41)Ti_(14)Cu_(12.5)Ni_(10)Be_(22.5) amorphous alloy.Numerical simulations of mold filling and solidification processes were carried out to determine the velocity fields and temperature fields of the alloy melt during mold filling process as well as the temperature fields and temperature gradient fields in the course of the solidification.According to the results,a cast with a complete shape can be obtained at 1200℃under the condition that the cooling rate is greater than the critical cooling rate.The ring-shaped part with a thickness of 25 mm,an equivalent diameter of 22 mm,and a mass of 1.32 kg was prepared by gravity casting in a copper mold.X-ray diffraction and differential scanning calorimetry data revealed that the produced cast had the amorphous structure.
基金Projects(51171041,51104047) supported by the National Natural Science Foundation of ChinaProject(N100409001) supported by the Fundamental Research Funds for the Central Universities,China
文摘The(Zr_(0.55)Al_(0.1)Ni_(0.05)Cu_(0.3))_(100-x)Ti_x alloys were prepared using an in-situ suck-casting method in a copper mold. The effects of Ti addition on the microstructure, mechanical and corrosion properties of the(Zr_(0.55)Al_(0.1)Ni_(0.05)Cu_(0.3))_(100-x)Ti_x alloys were investigated by X-ray diffraction, scanning electron microscopy, compressive tests and corrosion tests. It has been found that the addition of Ti higher than 4%(mole fraction) causes the formation of many crystalline phases in the alloy. The alloys with 1%-3% Ti display an obvious yield stage on their compressive stress-strain curves. An appropriate addition of Ti can improve the strength and ductility of the alloys. All the alloys have high corrosion resistance in 1 mol/L Na OH solution, and are corroded in 1 mol/L HCl solution. However, the appropriate addition of Ti can significantly improve the corrosion resistance of the alloys in HCl solution.
基金Project(50971041)support by the National Natural Science Foundation of China
文摘The glassy rods were successfully fabricated in the Cu-Zr-Ti-In alloy system by casting into a copper mold. The value of ATx reaches a maximum of 66 K for the BMG CusoZraTTi8In5 alloy. The reasons for enhancing glass forming ability of Cu-based BMGs with the addition of indium were discussed from atomic size and thermodynamics. Alternatively, the BMG Cu52Zra7Ti8In3 exhibits the highest compressive strength (1981 MPa) and the best plasticity among glassy Cu55-xZra7TisInx (x_〈5). The total plastic deformation of Cu52Zr37TisIn3 before fracture approaches 1.2%.
基金Project (2007CB607603) supported by the National Basic Research Program of ChinaProject (B08040) supported by the "111" Project, China
文摘The corrosion behaviors of Ti-based and Zr-based amorphous alloys and their corresponding crystallized alloys were studied by electrochemical methods. It is found that the corrosion potentials of Zr-based amorphous alloy and its corresponding crystalline counterpart are both lower than those of the Ti-based amorphous alloy in the 1 mol/L H2SO4 solution. In the 3.5% NaCl solution,Zr-based crystallized alloy exhibits the lowest corrosion potential among the experimental samples. No passivation is observed in the corrosion process for the Zr-based crystalline alloy. However, Zr- and Ti-based amorphous alloys both exhibit passivation characteristics. EIS measurements indicate the amorphous alloys exhibit better corrosion resistance than the crystallized one in the NaCl solution. Surface analysis shows that both amorphous alloys in the NaCl solution are eroded by pitting corrosion. In the H2SO4 solution, all the alloys display similar behaviors and their surfaces can mostly keep intact except for some cracks on the corroded surface at local region.
基金Projects(50874045,51301194)supported by the National Natural Science Foundation of ChinaProject(2144057)supported by the Natural Science Foundation of Beijing Municipality,China
文摘Effect of network structure on plasticity and fracture mode of Zr?Al?Ni?Cu bulk metallic glasses (BMGs) was investigated. The microstructures of transversal and longitudinal sections were exposed by chemical etching and observed by scanning electron microscopy (SEM). The mechanical properties were examined by room-temperature uniaxial compression test. The results show that both plasticity and fracture mode are significantly affected by the network structure and the alteration occurs when the size of the network structure reaches up to a critical value. When the cell size (dc) of the network structure is ~3μm, Zr-based BMGs characterize in plasticity that decreases with increasingdc. The fracture mode gradually transforms from single 45° shear fracture to double 45° shear fracture and then cleavage fracture with increasingdc. In addition, the mechanisms of the transition of the plasticity and the fracture mode for these Zr-based BMGs are also discussed.
基金Projects(50874045,51301194)supported by the National Natural Science Foundation of ChinaProject(2144057)supported by the Beijing Natural Science Foundation,China
文摘Room-temperature mechanical properties of Cu50Zr40Ti10-xNix(0≤x≤4,mole fraction,%) bulk metallic glasses (BMG) with aspect ratios in the range of 1:1-2.5:1 and loading rates in the range of1×10^-5-1×10^-2s^-1were systematically investigated by room-temperatureuniaxialcompression test.In the condition of an aspect ratio of 1:1, the superplasticity can be clearly observed for Cu50Zr40Ti10BMG when the loading rate is1×10^-4s^-1, while for Cu50Zr40Ti10-xNix(x=1-3, mole fraction, %) BMGs when the loading rate is1×10^-2s^-1. The plastic strain (εp), yielding strength (σy) and fracture strength (σf) of the studied Cu-based BMGs significantly depend on the aspect ratio and the loading rate. In addition, theσyof the studied Cu-based BMGs with an aspect ratio of 1:1 is close to the σfof those with the other aspect ratios when the loading rate is1×10^-2s^-1. The mechanism for the mechanical response to the loading rate and the aspect ratiowas also discussed.
文摘Quasi-static and high strain rate mechanical behavior of the Zr_ 1.25Ti_ 13.75Ni_ 10Cu_ 12.5Be_ 22.5 bulk metallic glass was determined covering strain rates from 1.02×10 -4s -1 to 3.258×103s -1. By use of split hopkinson pressure bar(SHPB) equipment, it is found that the alloy fractures in the high strain rate period with a strength well below that of its quasi-static counterpart and thus a strain rate induced embrittlement happens. Considering the glassy nature of the alloy and with careful analysis of the fracture morphology, dynamic damage accumulated in the high speed deformation period is suggested to be the reason for this embrittlement.
基金Project supported by the National Natural Science Foundation of China(Grant No.11172281)
文摘Dynamic strength behavior of Zr51Ti5NiloCu25A19 bulk metallic glass (BMG) up to 66 GPa was investigated in a series of plate impact shock-release and shock-reload experiments. Particle velocity profiles measured at the sample/LiF window interface were used to estimate the shear stress, shear modulus, and yield stress in shocked BMG. Beyond confirm- ing the previously reported strain-softening of shear stress during the shock loading process for BMGs, it is also shown that the softened Zr-BMG still has a high shear modulus and can support large yield stress when released or reloaded from the shocked state, and both the shear modulus and the yield stress appear as strain-hardening behaviors. The work provides a much clearer picture of the strength behavior of BMGs under shock loading, which is useful to comprehensively understand the plastic deformation mechanisms of BMGs.
基金Project (SWU110046) supported by the Doctorate Foundation of Southwest University,China
文摘Bulk metallic glass(BMG) rods Fe71Mo5-xNbxP12C10B2(x=1,2,3,4 and 5) with diameter of 1 or 2 mm were synthesized by copper mold casting.The effects of Nb substitution for Mo on the structure,thermal and mechanical properties of Fe71Mo5-xNbxP12C10B2 alloys were studied by X-ray diffraction,differential scanning calorimetry and compressive testing.The results show that the substitution of Nb for Mo leads to a decreased glass forming ability,but with plasticity of 1.0%,the fracture strength of Fe71Mo2Nb3P12C10B2 alloy increases up to 4.0 GPa.The improvement of the fracture strength is discussed in terms of the enhancement of atomic bonding nature and the favorite formation of a network-like structure due to the substitution of Nb for Mo.
基金Sponsored by the Ministerial Level Research Foundation (00J12 1 7 BQ0123)
文摘The split Hopkinson pressure bar (SHPB) was used to determine the dynamic compressive strength of the high-strength Zr38Ti17Cu10.5Co12Be22.5 bulk metallic glass at strain rate on the order of 102 s^-1. It is shown that at high strain rates beyond about 1 000 s^-1, uniform deformation within the metallic glass specimen could not be achieved and dispersion in the transmitted pulse can lead to discrepancies in measuring the dynamic failure strength of the present Zr-based bulk metallic glass. Based on these reasons, a copper insert was placed between the strike bar and the input bar to obtain reliable and consistent experimental data for testing of the Zr38Ti17Cu10.5Co12Be22.5 bulk metallic glass using the SHPB. Negative strain rate sensitivity was found in the present Zr-based bulk metallic glass.
基金This study was financially supported by the National Natural Science Foundation of China (No.50431030, No.59871025, and No.50171006).
文摘A novel Ti/Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 composite was successfully prepared by infiltrating the melt into sintered Ti preform. It shows that the introduction of Ti particles into the composite results in an increase in elastic strain to 3% and an enhancement of the strength up to 2.1 GPa. High specific strength has been obtained because of the decrease in density of the composite. It is suggested that an improvement in the mechanical properties of the composite may be attributed to the generation of multiple shear bands and some deformation in the Ti particles.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51661016,No.51861021,No.51571105)Wenzhou Public Welfare Science and Technology Project(G20170019)+1 种基金The Natural Science Foundation of Gansu Province(Grant No.145RJZA090)Hongliu Firstclass Discipline Construction Plan of Lanzhou University of Technology.
文摘In this paper,the effects of different strain rate(1.10-5 s-1,5.10-5 s-1,1.10-4 s-1,5.10-4 s-1,1.10-3 s-1)and aspect ratio(1:1,1.5:1,2:1,2.5:1,3:1)on mechanical properties of Zr-based metallic glasses at room temperature were investigated.The results indicate that as the strain rate increases,the plastic strain and compressive strength of the specimens gradually decrease.The specimen with the strain rate of 1.10-5 s-1 exhibits the higher plastic strain of 10.25%,compressive strength of 2002 MPa and fracture strength of 1999 MPa.In addition,accompanied with the increase in aspect ratio,the plastic strain of the specimens declines from 25.42%to 1.97%,meanwhile,the compressive strength and fracture strength of the specimens also present declining trend.