ZrB_(2)-based ceramics typically necessitate high temperature and pressure for sintering,whereas ZrB_(2)-SiC ceramics can be fabricated at 1500℃using the process of reactive melt infiltration with Si.In comparison to...ZrB_(2)-based ceramics typically necessitate high temperature and pressure for sintering,whereas ZrB_(2)-SiC ceramics can be fabricated at 1500℃using the process of reactive melt infiltration with Si.In comparison to the conventional preparation method,reactive synthesis allows for the more facile production of ultra-high temperature ceramics with fine particle size and homogeneous composition.In this work,ZrSi_(2),B4C,and C were used as raw materials to prepare ZrB_(2)-SiC via combination of tape casting and reactive melt infiltration herein referred to as ZBC ceramics.Control sample of ZrB_(2)-SiC was also prepared using ZrB_(2) and SiC as raw materials through an identical process designated as ZS ceramics.Microscopic analysis of both ceramic groups revealed smaller and more uniformly distributed particles of the ZrB_(2) phase in ZBC ceramics compared to the larger particles in ZS ceramics.Both sets of ceramics underwent cyclic oxidation testing in the air at 1600℃for a cumulative duration of 5 cycles,each cycle lasting 2 h.Analysis of the oxidation behavior showed that both ZBC ceramics and ZS ceramics developed a glassy SiO_(2)-ZrO_(2) oxide layer on their surfaces during the oxidation.This layer severed as a barrier against oxygen.In ZBC ceramics,ZrO_(2) is finely distributed in SiO_(2),whereas in ZS ceramics,larger ZrO_(2) particles coexist with glassy SiO_(2).The surface oxide layer of ZBC ceramics maintains a dense structure because the well-dispersed ZrO_(2) increases the viscosity of glassy SiO_(2),preventing its crystallization during the cooling.Conversely,some SiO_(2) in the oxide layer of ZS ceramics may crystallize and form a eutectic with ZrO_(2),leading to the formation of ZrSiO_(4).This leads to cracking of the oxide layer due to differences in thermal expansion coefficients,weakening its barrier effect.An analysis of the oxidation resistance shows that ZBC ceramics exhibit less increase in oxide layer thickness and mass compared to ZS ceramics,suggesting superior oxidation resistance of ZBC ceramics.展开更多
We investigated the influence of soaking time on the semi-conductivity and nonlinear electrical properties of TiO2- based varistor ceramic samples. We used a single sintering process and fabricated six disk samples of...We investigated the influence of soaking time on the semi-conductivity and nonlinear electrical properties of TiO2- based varistor ceramic samples. We used a single sintering process and fabricated six disk samples of (Sr, Bi, Si, Ta)-doped TiO2- based varistor ceramics sintered at 1 250℃ for 0.5 h, 1.0 h, 2.0 h, 3.0 h, 4.0 h, and 5.0 h, respectively. The samples were characterized by X-ray diffraction, breakdown voltage, and complex impedance. The results show that as the soaking time increases from 0.5 h to 5.0 h, the breakdown voltage drops before rising while the nonlinear coefficient increases and then decreases. We suggest that, considering both grain semi-conductivity and nonlinear electrical properties of the TiO2-based varistor ceramics, the optimal soaking time is between 2.0 h and 3.0 h.展开更多
In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent ...In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent performance in improving the material properties. While no attempts have been made to add SiC whiskers and SiC nanoparticles together into the ceramic matrix and the synergistically toughening effects of them have not been studied. An Al2O3-SiCw-SiC np advanced ceramic cutting tool material is fabricated by adding both one-dimensional SiC whiskers and zero-dimensional SiC nanoparticles into the Al2O3 matrix with an effective dispersing and mixing process. The composites with 25 vol% SiC whiskers and 25 vol% SiC nanoparticles alone are also investegated for comparison purposes. Results show that the Al2O3-SiCw-SiCnp composite with both 20 vo1% SiC whiskers and 5 vol% SiC nanoparticles additives have much improved mechanical properties. The flexural strength of Al2O3-SiCw-SiCnp is 730+ 95 MPa and fracture toughness is 5.6 ± 0.6 MPa.m1/2. The toughening and strengthening mechanisms of SiC whiskers and nanoparticles are studied when they are added either individually or in combination. It is indicated that when SiC whiskers and nanoparticles are added together, the grains are further refined and homogenized, so that the microstructure and fracture mode ratio is modified. The SiC nanoparticles are found helpful to enhance the toughening effects of the SiC whiskers. The proposed research helps to enrich the types of ceramic cutting tool and is benefit to expand the application range of ceramic cutting tool.展开更多
ZrB_(2)-based ceramic composites were prepared by spark plasma sintering using ZrB_(2) powder prepared by molten salt method as raw material and SiC and nano-graphite as additives.The effects of nano-graphite addition...ZrB_(2)-based ceramic composites were prepared by spark plasma sintering using ZrB_(2) powder prepared by molten salt method as raw material and SiC and nano-graphite as additives.The effects of nano-graphite addition on the physical properties and oxidation resistance of ZrB_(2)-based ceramic samples were investigated.The results show that the addition of an appropriate amount of nano-graphite can effectively improve the density of ZrB_(2)-based ceramic composites and improve the physical properties of the materials.The flexural strength of the ceramic sample with 8 vol.%nano-graphite reached 418.54 MPa,which was 53.14% higher than that of ZrB_(2)-SiC ceramic material(273.31 MPa),and its oxidation resistance was also significantly improved.It demonstrats that the addition of an appropriate amount of nano-graphite can effectively improve the physical properties and oxidation resistance of ZrB_(2)-SiC ceramic composites.Via prolonging its service life in application and promoting the development of ZrB_(2)-based ceramic composites,it is of great significance for clean steel smelting.展开更多
Reticulated ceramic foam filters provide an effective way to purify molten steel by removing non-metallic inclusions.We proposed a novel strategy to improve the purification performance of Al_(2)O_(3)-based ceramic fi...Reticulated ceramic foam filters provide an effective way to purify molten steel by removing non-metallic inclusions.We proposed a novel strategy to improve the purification performance of Al_(2)O_(3)-based ceramic filters by using microporous corundum-spinel raw materials to replace dense raw materials.Three kinds of Al_(2)O_(3)-based ceramic filters fabricated from dense α-Al_(2)O_(3) micro-powder or microporous corundum-spinel powder were selected to carry out the immersion tests with molten steel.On the one hand,the higher surface roughness of the filter skeleton prepared from microporous raw materials increased the adsorption capacity of skeleton surface on inclusions in molten steel.On the other hand,the higher apparent porosity and larger pore size of the filter skeleton were more beneficial to the penetration of molten steel in the micropores of skeleton.The reaction process at the solid-liquid interface also improved the wettability of the interface between skeleton and molten steel,resulting in a larger penetration depth and a better adsorption effect on the inclusions.In summary,the novel Al_(2)O_(3)-based ceramic filter prepared with microporous corundum-spinel powder and addition of 5 wt.% nano-Al_(2)O_(3) powder reduced the total oxygen content of the steel from 40.2×10^(-4) to 12.7×10^(-4) wt.% by 68.4% and the Al content from 0.46 to 0.18 wt.% by 60.9% after immersion test,presenting the most excellent purification performance on molten steel.展开更多
The effect of small changes in sintering temperature on microstructure, electrical properties, dielectric characteristics, and degradation behavior of V-Mn-Nb-Gd co-doped zinc oxide ceramics was investigated. With the...The effect of small changes in sintering temperature on microstructure, electrical properties, dielectric characteristics, and degradation behavior of V-Mn-Nb-Gd co-doped zinc oxide ceramics was investigated. With the increase of sintering temperature, the densities of the sintered pellets decreased from 5.54 to 5.42 g/cm3 and the average grain size increased from 4.1 to 11.7 μm. The breakdown field(E1 m A) decreased noticeably from 7138 to 920 V/cm with the increase of sintering temperature. The varistor ceramics sintered at 900 ℃ exhibited excellent nonohmic properties, which were 66 for the nonohmic coefficient and 77 μA/cm2 for the leakage current density. Concerning stability, the varistors sintered at 900 ℃ exhibited the strongest accelerated degradation characteristics, with ΔE1 mA =-9.2% for DC accelerated degradation stress of 0.85 E1 m A at 85 °C for 24 h.展开更多
High performance X8R dielectric ceramics were prepared by dopingBi2O3 to BaTiO3-based ceramics.The effect of small amounts(≤1.2 mol%) ofBi2O3 additive on the microstructure and dielectric properties of BaTiO3-based...High performance X8R dielectric ceramics were prepared by dopingBi2O3 to BaTiO3-based ceramics.The effect of small amounts(≤1.2 mol%) ofBi2O3 additive on the microstructure and dielectric properties of BaTiO3-based ceramics have been investigated.The Bi2O3 ,acting as a sintering additive,can effectively lower the sintering temperature of BaTiO3-based ceramics from 1300 to 1130 °C.The bulk density of BaTiO3-based ceramics increased and reached the maximum value with increasingBi2O3 content.The dielectric constant increased with increasingBi2O3 until it reached the maximum value with 0.8 mol%Bi2O3 additive,and the dielectric loss decreased with increasingBi2O3 content.Optimal dielectric properties of ε=2470,tanδ=0.011 and △ε/ε 25 ≤±9%(-55-150 °C) were obtained for the BaTiO3-based ceramics doped with 0.8 mol%Bi2O3 sintered at 1130 °C for 6 h.展开更多
ZrB2 ceramics with various hexagonal BN(hBN)additions up to 37 vol%were reactively densified by spark plasma sintering using powder mixtures containing ZrB2,ZrN and boron.ZrN-boron based additives effectively promoted...ZrB2 ceramics with various hexagonal BN(hBN)additions up to 37 vol%were reactively densified by spark plasma sintering using powder mixtures containing ZrB2,ZrN and boron.ZrN-boron based additives effectively promoted the densification process,ZrB2 ceramics reached>99%relative density at 2000℃and an applied pressure of 60 MPa with only 5 vol%in-situ formed hBN,whereas the relative density of pure ZrB2 was only 91.2%at the same conditions.Increasing thehBN contents,the morphology of hBN grains gradually changed from quasi-spherical to flake dominated,which has substantial influence on their mechanical properties.In-situ ZrB2-10 vol%hBN ceramics demonstrated high flexural strength of 597±22 MPa,relatively low Young’s modulus of 406 GPa and good machinability,especially for the impressively large strain to failure(1.47×10^-3)which is superior to most of their counterparts in the ZrB2 based particulate reinforced ceramics.展开更多
The thermal shock behavior of ZrB2-SiC ceramics was studied with water, air and methyl silicone oil as quenching media, respectively. The temperature of all coolants was room temperature (25℃) and the residual stre...The thermal shock behavior of ZrB2-SiC ceramics was studied with water, air and methyl silicone oil as quenching media, respectively. The temperature of all coolants was room temperature (25℃) and the residual strength of the ceramics after quenching was tested. The strength of the ceramics after water quenching had an obvious drop when the temperature difference, AT, was about 275℃, while the residual strength of the specimens quenched by air and silicone oil only varied a little and even increased slightly when the temperature difference was higher than 800℃. The different thermal conductive coefficient of the coolants and surface heat transfer coefficient resulted in the differences in the thermal shock behavior. The formation of oxidation layer was beneficial for improving the residual strength of the ceramics after quenching.展开更多
基金National Key R&D Program of China(2022YFB3707700)Shanghai Science and Technology Innovation Action Plan(21511104800)+3 种基金National Natural Science Foundation of China(52172111)National Science and Technology Major Project(2017-IV-0005-0042)Key Research Program of the Chinese Academy of Sciences(ZDRW-CN-2021-2-2)Science Center for Gas Turbine Project(P2022-B-IV-001-001)。
文摘ZrB_(2)-based ceramics typically necessitate high temperature and pressure for sintering,whereas ZrB_(2)-SiC ceramics can be fabricated at 1500℃using the process of reactive melt infiltration with Si.In comparison to the conventional preparation method,reactive synthesis allows for the more facile production of ultra-high temperature ceramics with fine particle size and homogeneous composition.In this work,ZrSi_(2),B4C,and C were used as raw materials to prepare ZrB_(2)-SiC via combination of tape casting and reactive melt infiltration herein referred to as ZBC ceramics.Control sample of ZrB_(2)-SiC was also prepared using ZrB_(2) and SiC as raw materials through an identical process designated as ZS ceramics.Microscopic analysis of both ceramic groups revealed smaller and more uniformly distributed particles of the ZrB_(2) phase in ZBC ceramics compared to the larger particles in ZS ceramics.Both sets of ceramics underwent cyclic oxidation testing in the air at 1600℃for a cumulative duration of 5 cycles,each cycle lasting 2 h.Analysis of the oxidation behavior showed that both ZBC ceramics and ZS ceramics developed a glassy SiO_(2)-ZrO_(2) oxide layer on their surfaces during the oxidation.This layer severed as a barrier against oxygen.In ZBC ceramics,ZrO_(2) is finely distributed in SiO_(2),whereas in ZS ceramics,larger ZrO_(2) particles coexist with glassy SiO_(2).The surface oxide layer of ZBC ceramics maintains a dense structure because the well-dispersed ZrO_(2) increases the viscosity of glassy SiO_(2),preventing its crystallization during the cooling.Conversely,some SiO_(2) in the oxide layer of ZS ceramics may crystallize and form a eutectic with ZrO_(2),leading to the formation of ZrSiO_(4).This leads to cracking of the oxide layer due to differences in thermal expansion coefficients,weakening its barrier effect.An analysis of the oxidation resistance shows that ZBC ceramics exhibit less increase in oxide layer thickness and mass compared to ZS ceramics,suggesting superior oxidation resistance of ZBC ceramics.
基金Funded by the Natural Science Foundation of China (No. 50872001 and No. 50642038)the Scientific Research Foundation of Education Ministry of Anhui Province (No. 2005KJ224 and No. KJ2007B132)the Graduate Student Innovation Programs of Anhui University (No. 20072006)
文摘We investigated the influence of soaking time on the semi-conductivity and nonlinear electrical properties of TiO2- based varistor ceramic samples. We used a single sintering process and fabricated six disk samples of (Sr, Bi, Si, Ta)-doped TiO2- based varistor ceramics sintered at 1 250℃ for 0.5 h, 1.0 h, 2.0 h, 3.0 h, 4.0 h, and 5.0 h, respectively. The samples were characterized by X-ray diffraction, breakdown voltage, and complex impedance. The results show that as the soaking time increases from 0.5 h to 5.0 h, the breakdown voltage drops before rising while the nonlinear coefficient increases and then decreases. We suggest that, considering both grain semi-conductivity and nonlinear electrical properties of the TiO2-based varistor ceramics, the optimal soaking time is between 2.0 h and 3.0 h.
基金Supported by National Natural Science Foundation of China(Grant No.51175305)
文摘In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent performance in improving the material properties. While no attempts have been made to add SiC whiskers and SiC nanoparticles together into the ceramic matrix and the synergistically toughening effects of them have not been studied. An Al2O3-SiCw-SiC np advanced ceramic cutting tool material is fabricated by adding both one-dimensional SiC whiskers and zero-dimensional SiC nanoparticles into the Al2O3 matrix with an effective dispersing and mixing process. The composites with 25 vol% SiC whiskers and 25 vol% SiC nanoparticles alone are also investegated for comparison purposes. Results show that the Al2O3-SiCw-SiCnp composite with both 20 vo1% SiC whiskers and 5 vol% SiC nanoparticles additives have much improved mechanical properties. The flexural strength of Al2O3-SiCw-SiCnp is 730+ 95 MPa and fracture toughness is 5.6 ± 0.6 MPa.m1/2. The toughening and strengthening mechanisms of SiC whiskers and nanoparticles are studied when they are added either individually or in combination. It is indicated that when SiC whiskers and nanoparticles are added together, the grains are further refined and homogenized, so that the microstructure and fracture mode ratio is modified. The SiC nanoparticles are found helpful to enhance the toughening effects of the SiC whiskers. The proposed research helps to enrich the types of ceramic cutting tool and is benefit to expand the application range of ceramic cutting tool.
基金the project supported by the Natural Science Foundation of Hubei Province(Grant No.2023BAB106)the National Natural Science Foundation of China(Grant No.U20A20239)the Scientific Research Project of Education Department of Hubei Province(D20211104).
文摘ZrB_(2)-based ceramic composites were prepared by spark plasma sintering using ZrB_(2) powder prepared by molten salt method as raw material and SiC and nano-graphite as additives.The effects of nano-graphite addition on the physical properties and oxidation resistance of ZrB_(2)-based ceramic samples were investigated.The results show that the addition of an appropriate amount of nano-graphite can effectively improve the density of ZrB_(2)-based ceramic composites and improve the physical properties of the materials.The flexural strength of the ceramic sample with 8 vol.%nano-graphite reached 418.54 MPa,which was 53.14% higher than that of ZrB_(2)-SiC ceramic material(273.31 MPa),and its oxidation resistance was also significantly improved.It demonstrats that the addition of an appropriate amount of nano-graphite can effectively improve the physical properties and oxidation resistance of ZrB_(2)-SiC ceramic composites.Via prolonging its service life in application and promoting the development of ZrB_(2)-based ceramic composites,it is of great significance for clean steel smelting.
基金financially supported by the National Natural Science Foundation of China(Grant No.51974214).
文摘Reticulated ceramic foam filters provide an effective way to purify molten steel by removing non-metallic inclusions.We proposed a novel strategy to improve the purification performance of Al_(2)O_(3)-based ceramic filters by using microporous corundum-spinel raw materials to replace dense raw materials.Three kinds of Al_(2)O_(3)-based ceramic filters fabricated from dense α-Al_(2)O_(3) micro-powder or microporous corundum-spinel powder were selected to carry out the immersion tests with molten steel.On the one hand,the higher surface roughness of the filter skeleton prepared from microporous raw materials increased the adsorption capacity of skeleton surface on inclusions in molten steel.On the other hand,the higher apparent porosity and larger pore size of the filter skeleton were more beneficial to the penetration of molten steel in the micropores of skeleton.The reaction process at the solid-liquid interface also improved the wettability of the interface between skeleton and molten steel,resulting in a larger penetration depth and a better adsorption effect on the inclusions.In summary,the novel Al_(2)O_(3)-based ceramic filter prepared with microporous corundum-spinel powder and addition of 5 wt.% nano-Al_(2)O_(3) powder reduced the total oxygen content of the steel from 40.2×10^(-4) to 12.7×10^(-4) wt.% by 68.4% and the Al content from 0.46 to 0.18 wt.% by 60.9% after immersion test,presenting the most excellent purification performance on molten steel.
文摘The effect of small changes in sintering temperature on microstructure, electrical properties, dielectric characteristics, and degradation behavior of V-Mn-Nb-Gd co-doped zinc oxide ceramics was investigated. With the increase of sintering temperature, the densities of the sintered pellets decreased from 5.54 to 5.42 g/cm3 and the average grain size increased from 4.1 to 11.7 μm. The breakdown field(E1 m A) decreased noticeably from 7138 to 920 V/cm with the increase of sintering temperature. The varistor ceramics sintered at 900 ℃ exhibited excellent nonohmic properties, which were 66 for the nonohmic coefficient and 77 μA/cm2 for the leakage current density. Concerning stability, the varistors sintered at 900 ℃ exhibited the strongest accelerated degradation characteristics, with ΔE1 mA =-9.2% for DC accelerated degradation stress of 0.85 E1 m A at 85 °C for 24 h.
基金supported by the Tianjin Natural Science Foundation, China (Grant No. 06YFJMJC01000)
文摘High performance X8R dielectric ceramics were prepared by dopingBi2O3 to BaTiO3-based ceramics.The effect of small amounts(≤1.2 mol%) ofBi2O3 additive on the microstructure and dielectric properties of BaTiO3-based ceramics have been investigated.The Bi2O3 ,acting as a sintering additive,can effectively lower the sintering temperature of BaTiO3-based ceramics from 1300 to 1130 °C.The bulk density of BaTiO3-based ceramics increased and reached the maximum value with increasingBi2O3 content.The dielectric constant increased with increasingBi2O3 until it reached the maximum value with 0.8 mol%Bi2O3 additive,and the dielectric loss decreased with increasingBi2O3 content.Optimal dielectric properties of ε=2470,tanδ=0.011 and △ε/ε 25 ≤±9%(-55-150 °C) were obtained for the BaTiO3-based ceramics doped with 0.8 mol%Bi2O3 sintered at 1130 °C for 6 h.
基金supported financially by grants from the National Natural Science Foundation of China(NSFC)(No.51972243 and 51521001)。
文摘ZrB2 ceramics with various hexagonal BN(hBN)additions up to 37 vol%were reactively densified by spark plasma sintering using powder mixtures containing ZrB2,ZrN and boron.ZrN-boron based additives effectively promoted the densification process,ZrB2 ceramics reached>99%relative density at 2000℃and an applied pressure of 60 MPa with only 5 vol%in-situ formed hBN,whereas the relative density of pure ZrB2 was only 91.2%at the same conditions.Increasing thehBN contents,the morphology of hBN grains gradually changed from quasi-spherical to flake dominated,which has substantial influence on their mechanical properties.In-situ ZrB2-10 vol%hBN ceramics demonstrated high flexural strength of 597±22 MPa,relatively low Young’s modulus of 406 GPa and good machinability,especially for the impressively large strain to failure(1.47×10^-3)which is superior to most of their counterparts in the ZrB2 based particulate reinforced ceramics.
文摘The thermal shock behavior of ZrB2-SiC ceramics was studied with water, air and methyl silicone oil as quenching media, respectively. The temperature of all coolants was room temperature (25℃) and the residual strength of the ceramics after quenching was tested. The strength of the ceramics after water quenching had an obvious drop when the temperature difference, AT, was about 275℃, while the residual strength of the specimens quenched by air and silicone oil only varied a little and even increased slightly when the temperature difference was higher than 800℃. The different thermal conductive coefficient of the coolants and surface heat transfer coefficient resulted in the differences in the thermal shock behavior. The formation of oxidation layer was beneficial for improving the residual strength of the ceramics after quenching.