ZrMn2 alloy was electro-synthesized directly from cathode pellets compacted with powdered mixture of MnO2 and ZrO2 in molten calcium chloride. Sintering temperature, cell voltage and electrolysis time were the dominan...ZrMn2 alloy was electro-synthesized directly from cathode pellets compacted with powdered mixture of MnO2 and ZrO2 in molten calcium chloride. Sintering temperature, cell voltage and electrolysis time were the dominant factors that affected the characteristics of the final product. The results confirmed the formation of pure ZrMn2 alloy through the electro-deoxidation of the mixed oxide pellets at 3.1 V for 12 h in 900 °C CaCl2 melt. The X-ray diffraction(XRD) and cyclic voltammetry analysis suggested that the electro-deoxidation proceeded from the reduction of manganese oxides to Mn, followed by ZrO2 or CaZrO3 reduction on the pre-formed Mn to ZrMn2 alloy. The cyclic voltammetry measurements using powder microelectrode showed that the prepared ZrMn2 alloy has a good electrochemical hydrogen storage property.展开更多
基金Project(51201058)supported by the National Natural Science Foundation of ChinaProjects(E2010000941,E2014209009)supported by Hebei Provincial Natural Science Foundation of China
文摘ZrMn2 alloy was electro-synthesized directly from cathode pellets compacted with powdered mixture of MnO2 and ZrO2 in molten calcium chloride. Sintering temperature, cell voltage and electrolysis time were the dominant factors that affected the characteristics of the final product. The results confirmed the formation of pure ZrMn2 alloy through the electro-deoxidation of the mixed oxide pellets at 3.1 V for 12 h in 900 °C CaCl2 melt. The X-ray diffraction(XRD) and cyclic voltammetry analysis suggested that the electro-deoxidation proceeded from the reduction of manganese oxides to Mn, followed by ZrO2 or CaZrO3 reduction on the pre-formed Mn to ZrMn2 alloy. The cyclic voltammetry measurements using powder microelectrode showed that the prepared ZrMn2 alloy has a good electrochemical hydrogen storage property.