Type Ⅰ hot corrosion behavior of SiO_2-Al_2O_3-glass composite coating based on Ti-47 Al-2 Cr-2 Nb substrate was investigated in the mixture salt of 25 wt%NaCl + 75 wt%Na_2SO_4 at 850 °C. The results showed that...Type Ⅰ hot corrosion behavior of SiO_2-Al_2O_3-glass composite coating based on Ti-47 Al-2 Cr-2 Nb substrate was investigated in the mixture salt of 25 wt%NaCl + 75 wt%Na_2SO_4 at 850 °C. The results showed that there was a bidirectional ion exchange between composite coating and the film of mixed salts, and the sodium ion in the molten salts penetrated into the glass matrix of composite coating, while the potassium ion in the glass matrix dissolved into the molten salts. A decrease in hot corrosion rate was achieved for the coated alloy in comparison with the bared substrate due to the composite coating acting as a diffusion barrier to sulfur and chlorine and preventing the molten salts from diffusing to the coating/alloy interface during the hot corrosion exposure. Additionally, the composite coating decreased the oxygen partial pressure at the coating/alloy interface and promoted the selective oxidation of Al to form a protective Al_2O_3 layer.展开更多
A facile ammonium-dichromate solution immersion method was introduced to synthesize the copperwettable Cr3C2 coating on and inside the carbon-carbon (C/C) preform. The formation mechanism and the microstructures of ...A facile ammonium-dichromate solution immersion method was introduced to synthesize the copperwettable Cr3C2 coating on and inside the carbon-carbon (C/C) preform. The formation mechanism and the microstructures of the Cr3C2 coatings were studied. The contact angle between molten copper and the C/C decreased from 140°to 60°, demonstrating the significant improvement in the wettability. The Cr3C2- coated C/C-Cu composite with only 4.2% porosity and 3.69 gcm^-3 density was manufactured through copper infiltration. As a result, the thermal and electrical conductivity of the modified C/C-Cu increased significantly due to the infiltrated copper. Also the mechanical properties of the composites including both the flexural and compressive strengths were enhanced by over 100%. The modified C/C-Cu composite exhibited lower friction coefficients and wear rates for different load levels than those of the commercial C/Cu composite. These results demonstrate the potential of the modified C/C-Cu material for use in electrical contacts.展开更多
Polycrystalline Cr2AlC coatings were prepared on M38G superalloy using a two-step method consisting of magnetron sputtering from Cr-Al-C composite targets at room temperature and subsequent annealing at 620 ℃. Partic...Polycrystalline Cr2AlC coatings were prepared on M38G superalloy using a two-step method consisting of magnetron sputtering from Cr-Al-C composite targets at room temperature and subsequent annealing at 620 ℃. Particularly, various targets synthesized by hot pressing mixture of Cr, Al, and C powders at 650-1000 ℃ were used. It was found that regardless of the phase compositions and density of the com- posite targets, when the molar ratio of Cr:Al:C in the starting materials was 2:1:1, phase-pure crystalline Cr2AlC coatings were prepared by magnetron sputtering and post crystallization. The Cr2AIC coatings were dense and crack-free and had a duplex structure. The adhesion strength of the coating deposited on M38G superalloy from the 800 ℃ hot-pressed target and then annealed at 620 ℃ for 20 h in Ar exceeded 82 ± 6 MPa, while its hardness was 12 ± 3 GPa.展开更多
This work focuses on fundamental understanding of microstructure evolution of nanostructured ferritic alloy(NFA) and 25 vol.% Cr3C2 coated Si C(Cr3C2@Si C)-NFA composite during spark plasma sintering at950°C and ...This work focuses on fundamental understanding of microstructure evolution of nanostructured ferritic alloy(NFA) and 25 vol.% Cr3C2 coated Si C(Cr3C2@Si C)-NFA composite during spark plasma sintering at950°C and the following thermal treatment at 1000°C. A unique bi-phase microstructure with distinct Cr-rich and Si-rich phases has been observed for the 25 vol.% Cr3C2@Si C-NFA composite, while for the NFA sample, the traditional large grain microstructure remains. Grain sizes are significantly smaller for the25 vol.% Cr3C2@Si C-NFA composite compared to those for the pure NFA, which can be attributed to the presence of grain boundary phases in the composite sample. During the thermal treatment, microstructure features can be directly correlated with the dissolution kinetics and phase diagrams calculated using Thermo-Calc/DICTRA/PRISMA~?.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 51201171)the National High Technology Research and Development Program of China (863 Program, Grant No. 2012AA03A512)
文摘Type Ⅰ hot corrosion behavior of SiO_2-Al_2O_3-glass composite coating based on Ti-47 Al-2 Cr-2 Nb substrate was investigated in the mixture salt of 25 wt%NaCl + 75 wt%Na_2SO_4 at 850 °C. The results showed that there was a bidirectional ion exchange between composite coating and the film of mixed salts, and the sodium ion in the molten salts penetrated into the glass matrix of composite coating, while the potassium ion in the glass matrix dissolved into the molten salts. A decrease in hot corrosion rate was achieved for the coated alloy in comparison with the bared substrate due to the composite coating acting as a diffusion barrier to sulfur and chlorine and preventing the molten salts from diffusing to the coating/alloy interface during the hot corrosion exposure. Additionally, the composite coating decreased the oxygen partial pressure at the coating/alloy interface and promoted the selective oxidation of Al to form a protective Al_2O_3 layer.
基金the financial support from of the National Basic Research Program of China (Nos. 2012CB619600 and 2011CB012803)
文摘A facile ammonium-dichromate solution immersion method was introduced to synthesize the copperwettable Cr3C2 coating on and inside the carbon-carbon (C/C) preform. The formation mechanism and the microstructures of the Cr3C2 coatings were studied. The contact angle between molten copper and the C/C decreased from 140°to 60°, demonstrating the significant improvement in the wettability. The Cr3C2- coated C/C-Cu composite with only 4.2% porosity and 3.69 gcm^-3 density was manufactured through copper infiltration. As a result, the thermal and electrical conductivity of the modified C/C-Cu increased significantly due to the infiltrated copper. Also the mechanical properties of the composites including both the flexural and compressive strengths were enhanced by over 100%. The modified C/C-Cu composite exhibited lower friction coefficients and wear rates for different load levels than those of the commercial C/Cu composite. These results demonstrate the potential of the modified C/C-Cu material for use in electrical contacts.
基金supported by the National Natural Science Foundation of China under Grant Nos.51271191,51571205 and 51401209
文摘Polycrystalline Cr2AlC coatings were prepared on M38G superalloy using a two-step method consisting of magnetron sputtering from Cr-Al-C composite targets at room temperature and subsequent annealing at 620 ℃. Particularly, various targets synthesized by hot pressing mixture of Cr, Al, and C powders at 650-1000 ℃ were used. It was found that regardless of the phase compositions and density of the com- posite targets, when the molar ratio of Cr:Al:C in the starting materials was 2:1:1, phase-pure crystalline Cr2AlC coatings were prepared by magnetron sputtering and post crystallization. The Cr2AIC coatings were dense and crack-free and had a duplex structure. The adhesion strength of the coating deposited on M38G superalloy from the 800 ℃ hot-pressed target and then annealed at 620 ℃ for 20 h in Ar exceeded 82 ± 6 MPa, while its hardness was 12 ± 3 GPa.
基金supported financially by the Office of Nuclear Energy of Department of Energy(No.#DE-NE0008264)。
文摘This work focuses on fundamental understanding of microstructure evolution of nanostructured ferritic alloy(NFA) and 25 vol.% Cr3C2 coated Si C(Cr3C2@Si C)-NFA composite during spark plasma sintering at950°C and the following thermal treatment at 1000°C. A unique bi-phase microstructure with distinct Cr-rich and Si-rich phases has been observed for the 25 vol.% Cr3C2@Si C-NFA composite, while for the NFA sample, the traditional large grain microstructure remains. Grain sizes are significantly smaller for the25 vol.% Cr3C2@Si C-NFA composite compared to those for the pure NFA, which can be attributed to the presence of grain boundary phases in the composite sample. During the thermal treatment, microstructure features can be directly correlated with the dissolution kinetics and phase diagrams calculated using Thermo-Calc/DICTRA/PRISMA~?.