Satellited CoNiCrAlY–Al_(2)O_(3)feedstocks with 2wt%, 4wt%, and 6wt% oxide nanoparticles and pure CoNiCrAlY powder were deposited by the high-velocity oxy fuel process on an Inconel738 superalloy substrate. The oxida...Satellited CoNiCrAlY–Al_(2)O_(3)feedstocks with 2wt%, 4wt%, and 6wt% oxide nanoparticles and pure CoNiCrAlY powder were deposited by the high-velocity oxy fuel process on an Inconel738 superalloy substrate. The oxidation test was performed at 1050℃ for 5, 50, 100,150, 200, and 400 h. The microstructure and phase composition of powders and coatings were characterized by scanning electron microscopy and X-ray diffraction, respectively. The bonding strength of the coatings was also evaluated. The results proved that with the increase in the percentage of nanoparticles(from 2wt% to 6wt%), the amount of porosity(from 1vol% to 4.7vol%), unmelted particles, and roughness of the coatings(from 4.8 to 8.8 μm) increased, and the bonding strength decreased from 71 to 48 MPa. The thicknesses of the thermally grown oxide layer of pure and composite coatings(2wt%, 4wt%, and 6wt%) after 400 h oxidation were measured as 6.5, 5.5, 7.6, and 8.1 μm, respectively.The CoNiCrAlY–2wt% Al_(2)O_(3)coating showed the highest oxidation resistance due to the diffusion barrier effect of well-dispersed nanoparticles. The CoNiCrAlY–6wt% Al_(2)O_(3)coating had the lowest oxidation resistance due to its rough surface morphology and porous microstructure.展开更多
A heat-resistant dispersion-strengthening nano-Al_2O_3/Cu composite with highstrength and high electric conductivity was fabricated in a multiplex medium. The internaloxidation product, microstructures and properties ...A heat-resistant dispersion-strengthening nano-Al_2O_3/Cu composite with highstrength and high electric conductivity was fabricated in a multiplex medium. The internaloxidation product, microstructures and properties of the composite, and the process flow weresystematically studied. It is confirmed that this new technique simplifies the process and improvesthe properties of the composite. X-ray analysis indicates that the alumina particles formed duringinternal oxidation consist of a large mount of gamma-Al_2O_3 and a certain amount of theta-Al_2O_3and alpha-Al_2O_3. TEM observation shows that the obtained gamma-Al_2O_3 nano-particles areuniformly distributed in the copper grains; their mean size and space between particles are 7 runand 30 nm, respectively. The main properties of the composite with 50 percent cold deformation areas follows: the electric conductivity is 51 MS/m (87 percent IACS), sigma_b = 628 MPa, and thehardness is HRB86. After annealing at 1273 K, all or most of the above properties remain, and themicrostructures are still dependent on elongated fiber-form grains.展开更多
MnO_x/Al_2O_3 and MnO_x/ZrO_2-Al_2O_3 catalysts were prepared by incipientwetness impregnation of Mn(CH_3COO)_2 on the corresponding supports, followed by thecharacterization using X-ray diffraction (XRD), temperature...MnO_x/Al_2O_3 and MnO_x/ZrO_2-Al_2O_3 catalysts were prepared by incipientwetness impregnation of Mn(CH_3COO)_2 on the corresponding supports, followed by thecharacterization using X-ray diffraction (XRD), temperature programmed reduction (TPR) and BETsurface area techniques. The result shows the BET surface area of ZrO_2-Al_2O_3 is lower than thatof Al_2O_3 due to the loading of ZrO_2. However the resulted MnO_x/ZrO_2-Al_2O_3 catalyst exhibitshigher activity for methane combustion than MnO_x/Al_2O_3, because the addition of ZrO_2 ontoAl_2O_3 is beneficial for the dispersion of Mn species and the improvement of the lattice oxygenactivity in MnO_x, subsequently the activation of methane during combustion. The optimum loading ofZr in MnO_x/ZrO_2-Al_2O_3 is in the range of 5%-10% correlated with the calcination temperatures ofcatalyst supports.展开更多
Based on the γ-Al2O3 support with large-size pores, impregnation-deposition method was adopted to prepare the nano CeO_2/γ-Al2O3 composite supports. The results of XRD showed that there was no CeO_2-Al2O3 mixture or...Based on the γ-Al2O3 support with large-size pores, impregnation-deposition method was adopted to prepare the nano CeO_2/γ-Al2O3 composite supports. The results of XRD showed that there was no CeO_2-Al2O3 mixture or solid solution, indicating that CeO_2 was only loaded on the surface of Al2O3. The CeO_2/γ-Al2O3 composite support had larger specific surface area (170 m2·g-1), while for the non-loaded nanosized CeO_2, the specific surface area was small(~50 m2·g-1). The influence of impregnation and drying methods on the surface properties, thermal stability and crystal structure of composite supports was characterized by XRD, DTA and BET. The CeO_2/γ-Al2O3 composite support prepared by vacuum impregnation and microwave drying was better than that prepared by conventional impregnation and drying.展开更多
文摘Satellited CoNiCrAlY–Al_(2)O_(3)feedstocks with 2wt%, 4wt%, and 6wt% oxide nanoparticles and pure CoNiCrAlY powder were deposited by the high-velocity oxy fuel process on an Inconel738 superalloy substrate. The oxidation test was performed at 1050℃ for 5, 50, 100,150, 200, and 400 h. The microstructure and phase composition of powders and coatings were characterized by scanning electron microscopy and X-ray diffraction, respectively. The bonding strength of the coatings was also evaluated. The results proved that with the increase in the percentage of nanoparticles(from 2wt% to 6wt%), the amount of porosity(from 1vol% to 4.7vol%), unmelted particles, and roughness of the coatings(from 4.8 to 8.8 μm) increased, and the bonding strength decreased from 71 to 48 MPa. The thicknesses of the thermally grown oxide layer of pure and composite coatings(2wt%, 4wt%, and 6wt%) after 400 h oxidation were measured as 6.5, 5.5, 7.6, and 8.1 μm, respectively.The CoNiCrAlY–2wt% Al_(2)O_(3)coating showed the highest oxidation resistance due to the diffusion barrier effect of well-dispersed nanoparticles. The CoNiCrAlY–6wt% Al_(2)O_(3)coating had the lowest oxidation resistance due to its rough surface morphology and porous microstructure.
文摘A heat-resistant dispersion-strengthening nano-Al_2O_3/Cu composite with highstrength and high electric conductivity was fabricated in a multiplex medium. The internaloxidation product, microstructures and properties of the composite, and the process flow weresystematically studied. It is confirmed that this new technique simplifies the process and improvesthe properties of the composite. X-ray analysis indicates that the alumina particles formed duringinternal oxidation consist of a large mount of gamma-Al_2O_3 and a certain amount of theta-Al_2O_3and alpha-Al_2O_3. TEM observation shows that the obtained gamma-Al_2O_3 nano-particles areuniformly distributed in the copper grains; their mean size and space between particles are 7 runand 30 nm, respectively. The main properties of the composite with 50 percent cold deformation areas follows: the electric conductivity is 51 MS/m (87 percent IACS), sigma_b = 628 MPa, and thehardness is HRB86. After annealing at 1273 K, all or most of the above properties remain, and themicrostructures are still dependent on elongated fiber-form grains.
基金This work was financially supported by Shandong Provincial Department of Science and Technology(project number:981206403)and the State Key Laboratory of Coal Conversion at Institute of Coal Chemistry of CAS(2002-2003)
文摘MnO_x/Al_2O_3 and MnO_x/ZrO_2-Al_2O_3 catalysts were prepared by incipientwetness impregnation of Mn(CH_3COO)_2 on the corresponding supports, followed by thecharacterization using X-ray diffraction (XRD), temperature programmed reduction (TPR) and BETsurface area techniques. The result shows the BET surface area of ZrO_2-Al_2O_3 is lower than thatof Al_2O_3 due to the loading of ZrO_2. However the resulted MnO_x/ZrO_2-Al_2O_3 catalyst exhibitshigher activity for methane combustion than MnO_x/Al_2O_3, because the addition of ZrO_2 ontoAl_2O_3 is beneficial for the dispersion of Mn species and the improvement of the lattice oxygenactivity in MnO_x, subsequently the activation of methane during combustion. The optimum loading ofZr in MnO_x/ZrO_2-Al_2O_3 is in the range of 5%-10% correlated with the calcination temperatures ofcatalyst supports.
文摘Based on the γ-Al2O3 support with large-size pores, impregnation-deposition method was adopted to prepare the nano CeO_2/γ-Al2O3 composite supports. The results of XRD showed that there was no CeO_2-Al2O3 mixture or solid solution, indicating that CeO_2 was only loaded on the surface of Al2O3. The CeO_2/γ-Al2O3 composite support had larger specific surface area (170 m2·g-1), while for the non-loaded nanosized CeO_2, the specific surface area was small(~50 m2·g-1). The influence of impregnation and drying methods on the surface properties, thermal stability and crystal structure of composite supports was characterized by XRD, DTA and BET. The CeO_2/γ-Al2O3 composite support prepared by vacuum impregnation and microwave drying was better than that prepared by conventional impregnation and drying.