The microstructures and corrosion behaviors of as-cast,T4-treated,and T6-treated Mg-6Gd-3Y-0.5Zr alloys were systematically investigated by SEM,TEM,immersion test,and electrochemical corrosion test.The results show th...The microstructures and corrosion behaviors of as-cast,T4-treated,and T6-treated Mg-6Gd-3Y-0.5Zr alloys were systematically investigated by SEM,TEM,immersion test,and electrochemical corrosion test.The results show that the microstructure of the as-cast alloy is composed ofα-Mg and Mg_(24)(Gd,Y)_(5)eutectic phase,and in T4-treated alloy,Mg_(24)(Gd,Y)_(5)phase dissolves into theα-Mg matrix,leading to an increase in the(Y,Gd)H_(2)phase.After T6 treatment,nanoscale Mg_(24)(Gd,Y)_(5)phase dispersedly precipitates from theα-Mg matrix,and exhibits a specific orientation relationship with theα-Mg:(332)Mg_((24)(Gd,Y)_(5))//(1011)_(α-Mg),[136]Mg_((24)(Gd,Y)_(5))//[1210]_(α-Mg).The corrosion resistance of the Mg-6Gd-3Y-0.5Zr alloys can be ranked in the following order:T6-treated alloy exhibits the highest corrosion resistance,followed by the T4-treated alloy,and finally,the as-cast alloy.The corrosion products of the alloys are all composed of MgO,Mg(OH)_(2),Gd_(2)O_(3),Y_(2)O_(3),and MgCl_(2).The corrosion behavior of Mg-6Gd-3Y-0.5Zr alloy is closely related to the precipitated phase.By establishing the relationship between corrosion rate,hydrogen evolution rate,and corrosion potential,it is further demonstrated that during the micro galvanic corrosion process,the coarse Mg_(24)(Gd,Y)_(5)phase in the as-cast alloy undergoes extensive dissolution,and(Y,Gd)H_(2)phase promotes the dissolution of theα-Mg matrix in the T4-treated alloy,intensifying the hydrogen evolution reaction.The T6-treated alloy,with dispersive precipitation of nanoscale Mg_(24)(Gd,Y)_(5)phase,exhibits better corrosion resistance performance.展开更多
The effect of 0.5wt.%Zn addition on the microstructure and mechanical properties of Mg-3Y-2Nd-0.5Zr(WE32)alloy was investigated.The results indicate that WE32-0.5Zn alloy takes 48 h to reach peak hardness after solid ...The effect of 0.5wt.%Zn addition on the microstructure and mechanical properties of Mg-3Y-2Nd-0.5Zr(WE32)alloy was investigated.The results indicate that WE32-0.5Zn alloy takes 48 h to reach peak hardness after solid solution treatment at 525℃and aging at 200℃,10 h earlier than WE32 alloy,which implies an accelerated aging precipitation kinetics owing to the addition of 0.5wt.%Zn.A large quantity of finerod and rectangular block-like Zn-Zr precipitates in theα-Mg matrix are formed in the WE32-0.5Zn alloy,and numerous needle-likeβ1phases are distributed at both ends of the Zn-Zr precipitates at peak-aged condition.In peak-aged condition,the ultimate tensile strength considerably increases from 263.2 MPa(WE32)to 309.6 MPa(WE32-0.5Zn),and the elongation dramatically increases from 4.3%(WE32)to 8.9%(WE32-0.5Zn).Theβ’andβ1phases are the main precipitates of the WE32-0.5Zn alloy peak-aged at 200℃.Theβ’andβ1phases easily nucleate at the Zn-Zr precipitates,and theβ1phases are particularly likely to nucleate and grow at the interface between the two ends of the Zn-Zr precipitates,which accelerates aging precipitation kinetics and leads to a shorter time to achieve peak aging.展开更多
The dynamic recrystallization behavior of 7085 aluminum alloy during hot compression at various temperatures (573?723 K) and strain rates (0.01-10 s^-1) was studied by electron back scattered diffraction (EBSD...The dynamic recrystallization behavior of 7085 aluminum alloy during hot compression at various temperatures (573?723 K) and strain rates (0.01-10 s^-1) was studied by electron back scattered diffraction (EBSD), electro-probe microanalyzer (EPMA) and transmission electron microscopy (TEM). It is shown that dynamic recovery is the dominant softening mechanism at high Zener?Hollomon (Z) values, and dynamic recrystallization tends to appear at low Z values. Hot compression with ln Z=24.01 (723 K, 0.01 s?1) gives rise to the highest fraction of recrystallization of 10.2%. EBSD results show that the recrystallized grains are present near the original grain boundaries and exhibit similar orientation to the deformed grain. Strain-induced boundary migration is likely the mechanism for dynamic recrystallization. The low density of Al3Zr dispersoids near grain boundaries can make contribution to strain-induced boundary migration.展开更多
Semi-quantitative electron probe microanalysis (EPMA) mapping, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to study the effect of one-step and two-step treatments ...Semi-quantitative electron probe microanalysis (EPMA) mapping, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to study the effect of one-step and two-step treatments on the Zr distribution and Al3Zr dispersoid characteristics in as-cast commercial AA7150 aluminum alloy. It is shown that the Zr concentration in the dendrite centre regions is higher than that near the dendrite edges in the as-cast condition, and that homogenization at 460 °C for 20 h is insufficient to remove these concentration gradients. After homogenizing at 460-480 °C, a high number density of larger dispersoids can be observed in dendrite centre regions but not near dendrite edges. Furthermore, the dispersoid size increases with increasing the temperature during both one-step and two-step homogenization treatments.展开更多
基金National Natural Science Foundation of China(Nos.U2037601,51821001)Key Basic Research Project of the National Basic Strengthening Plan,China(No.2022-xxxx-ZD-093-xx)。
基金supported by the Key Project of Equipment Pre-research Field Fund under Grant No.61409230407.
文摘The microstructures and corrosion behaviors of as-cast,T4-treated,and T6-treated Mg-6Gd-3Y-0.5Zr alloys were systematically investigated by SEM,TEM,immersion test,and electrochemical corrosion test.The results show that the microstructure of the as-cast alloy is composed ofα-Mg and Mg_(24)(Gd,Y)_(5)eutectic phase,and in T4-treated alloy,Mg_(24)(Gd,Y)_(5)phase dissolves into theα-Mg matrix,leading to an increase in the(Y,Gd)H_(2)phase.After T6 treatment,nanoscale Mg_(24)(Gd,Y)_(5)phase dispersedly precipitates from theα-Mg matrix,and exhibits a specific orientation relationship with theα-Mg:(332)Mg_((24)(Gd,Y)_(5))//(1011)_(α-Mg),[136]Mg_((24)(Gd,Y)_(5))//[1210]_(α-Mg).The corrosion resistance of the Mg-6Gd-3Y-0.5Zr alloys can be ranked in the following order:T6-treated alloy exhibits the highest corrosion resistance,followed by the T4-treated alloy,and finally,the as-cast alloy.The corrosion products of the alloys are all composed of MgO,Mg(OH)_(2),Gd_(2)O_(3),Y_(2)O_(3),and MgCl_(2).The corrosion behavior of Mg-6Gd-3Y-0.5Zr alloy is closely related to the precipitated phase.By establishing the relationship between corrosion rate,hydrogen evolution rate,and corrosion potential,it is further demonstrated that during the micro galvanic corrosion process,the coarse Mg_(24)(Gd,Y)_(5)phase in the as-cast alloy undergoes extensive dissolution,and(Y,Gd)H_(2)phase promotes the dissolution of theα-Mg matrix in the T4-treated alloy,intensifying the hydrogen evolution reaction.The T6-treated alloy,with dispersive precipitation of nanoscale Mg_(24)(Gd,Y)_(5)phase,exhibits better corrosion resistance performance.
基金Projects(2019YFA0708802, 2020YFA0711104) supported by the National Key R&D Program of ChinaProject(U21B6004) supported by the National Natural Science Foundation of ChinaProject(2021GK1040) supported by Major Project of Scientific Innovation of Hunan Province,China。
基金financially supported by the Natural Science Foundation of Inner Mongolia under Grant No.2022MS05045the Science and Technology Planning of Inner Mongolia under Grant No.2020GG0175the Project of State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization under Grant No.2021Z2351。
文摘The effect of 0.5wt.%Zn addition on the microstructure and mechanical properties of Mg-3Y-2Nd-0.5Zr(WE32)alloy was investigated.The results indicate that WE32-0.5Zn alloy takes 48 h to reach peak hardness after solid solution treatment at 525℃and aging at 200℃,10 h earlier than WE32 alloy,which implies an accelerated aging precipitation kinetics owing to the addition of 0.5wt.%Zn.A large quantity of finerod and rectangular block-like Zn-Zr precipitates in theα-Mg matrix are formed in the WE32-0.5Zn alloy,and numerous needle-likeβ1phases are distributed at both ends of the Zn-Zr precipitates at peak-aged condition.In peak-aged condition,the ultimate tensile strength considerably increases from 263.2 MPa(WE32)to 309.6 MPa(WE32-0.5Zn),and the elongation dramatically increases from 4.3%(WE32)to 8.9%(WE32-0.5Zn).Theβ’andβ1phases are the main precipitates of the WE32-0.5Zn alloy peak-aged at 200℃.Theβ’andβ1phases easily nucleate at the Zn-Zr precipitates,and theβ1phases are particularly likely to nucleate and grow at the interface between the two ends of the Zn-Zr precipitates,which accelerates aging precipitation kinetics and leads to a shorter time to achieve peak aging.
基金Project(2012CB619500)supported by the National Basic Research Program of China
文摘The dynamic recrystallization behavior of 7085 aluminum alloy during hot compression at various temperatures (573?723 K) and strain rates (0.01-10 s^-1) was studied by electron back scattered diffraction (EBSD), electro-probe microanalyzer (EPMA) and transmission electron microscopy (TEM). It is shown that dynamic recovery is the dominant softening mechanism at high Zener?Hollomon (Z) values, and dynamic recrystallization tends to appear at low Z values. Hot compression with ln Z=24.01 (723 K, 0.01 s?1) gives rise to the highest fraction of recrystallization of 10.2%. EBSD results show that the recrystallized grains are present near the original grain boundaries and exhibit similar orientation to the deformed grain. Strain-induced boundary migration is likely the mechanism for dynamic recrystallization. The low density of Al3Zr dispersoids near grain boundaries can make contribution to strain-induced boundary migration.
文摘Semi-quantitative electron probe microanalysis (EPMA) mapping, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to study the effect of one-step and two-step treatments on the Zr distribution and Al3Zr dispersoid characteristics in as-cast commercial AA7150 aluminum alloy. It is shown that the Zr concentration in the dendrite centre regions is higher than that near the dendrite edges in the as-cast condition, and that homogenization at 460 °C for 20 h is insufficient to remove these concentration gradients. After homogenizing at 460-480 °C, a high number density of larger dispersoids can be observed in dendrite centre regions but not near dendrite edges. Furthermore, the dispersoid size increases with increasing the temperature during both one-step and two-step homogenization treatments.