In order to study and analyze the stability of engineering rock mass under non-uniform triaxial stress and obtain the evolution mechanism of the whole process of fracture,a series of conventional triaxial compression ...In order to study and analyze the stability of engineering rock mass under non-uniform triaxial stress and obtain the evolution mechanism of the whole process of fracture,a series of conventional triaxial compression tests and three-dimensional numerical simulation tests were carried out on hollow granite specimens with different diameters.The bearing capacity of hollow cylindrical specimen is analyzed based on elasticity.The results show that:1)Under low confining pressure,the tensile strain near the hole of the hollow cylindrical specimen is obvious,and the specimen deformation near the hole is significant.At the initial stage of loading,the compressive stress and compressive strain of the specimen are widely distributed.With the progress of loading,the number of microelements subjected to tensile strain gradually increases,and even spreads throughout the specimen;2)Under conventional triaxial compression,the cracking position of hollow cylinder specimens is concentrated in the upper and lower parts,and the final fracture mode is generally compressive shear failure.The final fracture mode of complete specimen is generally tensile fracture.Under high confining pressure,the tensile cracks of the sample are concentrated in the upper and lower parts and are not connected,while the cracks of the upper and lower parts of the intact sample will expand and connect to form a fracture surface;3)In addition,the tensile crack widths of intact and hollow cylindrical specimens under low confining pressure are larger than those under high confining pressure.展开更多
A photonic crystal nanobeam cavity(M-PCNC)with a structure incorporating a mixture of diamond-shaped and circular air holes is pro-posed.The performance of the cavity is simulated and studied theoretically.Using thefin...A photonic crystal nanobeam cavity(M-PCNC)with a structure incorporating a mixture of diamond-shaped and circular air holes is pro-posed.The performance of the cavity is simulated and studied theoretically.Using thefinite-difference time-domain method,the parameters of the M-PCNC,including cavity thickness and width,lattice constant,and radii and numbers of holes,are optimized,with the quality factor Q and mode volume Vm as performance indicators.Mutual modulation of the lattice constant and hole radius enable the proposed M-PCNC to realize outstanding performance.The optimized cavity possesses a high quality factor Q 1.45105 and an ultra-small mode=×volume Vm 0.01(λ/n)[Zeng et al.,Opt Lett 2023:48;3981–3984]in the telecommunications wavelength range.Light can be progres-=sively squeezed in both the propagation direction and the perpendicular in-plane direction by a series of interlocked anti-slots and slots in the diamond-shaped hole structure.Thereby,the energy can be confined within a small mode volume to achieve an ultra-high Q/Vm ratio.展开更多
This paper employes variable function method and the technique of conformal mappingto discuss the anti-plane problem of a circular hole with three unequal cracksin a one-dimensional (1D) hexagonal piezoelectric quas...This paper employes variable function method and the technique of conformal mappingto discuss the anti-plane problem of a circular hole with three unequal cracksin a one-dimensional (1D) hexagonal piezoelectric quasicrystal. Based on the piezoelectricityfundamental equations of quasicrystal materials and the symmetry of1D hexagonal quasicrystal and its linear piezoelectricity effect, 1D hexagonal quasicrystalcontrol equations of anti-plane problem are derived. Applying Cauchyintegral formula, the analytical expressions for the crack tip filed intensity factorsare presented with the assumption that the crack are electrical impermeable andelectrical permeable. With the variation of the hole-size and the crack length, someof the new model of crack are obtained. In the absence of the electric load, theresults match with the classical ones. The numerical results indicate the effects ofgeometric parameters on the field intensity factors. It is verified that the horizontalcrack length and the circle radius can easily promote crack growth. Researchon such issues will provide reliable theoretical value for the engineering materialspreparation and application.展开更多
The Non-explosive expansion material (NEEM) is a method more environmentally friendly than the harmful conventional rock fracturing techniques. However, it is slower and very costly. Thus, any means of economizing the...The Non-explosive expansion material (NEEM) is a method more environmentally friendly than the harmful conventional rock fracturing techniques. However, it is slower and very costly. Thus, any means of economizing their use is very desirable. This paper investigates the crack growth between two neighboring holes of a gneiss rock internally pressurized by NEEM mixed with water with the aim to evaluate the influence of holes spacing (center-to-center distance), on the initiation and growth of cracks. Field experimental results reveal that crack starts earlier and grows faster with increasing ambient temperature. But when the ambient temperature is above 28<span style="white-space:nowrap;">°</span>C, the NEEM is “blown out” of the holes. At these ambient temperatures, the surrounding rocks are hot and cannot dissipate efficiently the heat generated by the hydration reaction. The best filling time was found to be in the evening when the daily hot temperature has drooped. The time to first crack increases as hole diameter decrease<span style="font-family:Verdana;">s</span><span style="font-family:Verdana;">. The 3D numerical modeling and simulation of crack growth between two neighboring holes internally pressurized by NEEM using ABAQUS (XFEM/CZM) software show</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> a good agreement with the theoretical and experimental results.</span>展开更多
The existing investigations on piezoelectric materials containing an elliptic hole or a crack mainly focus on remote uniform tensile loads.In order to have a better understanding for the fracture behavior of piezoelec...The existing investigations on piezoelectric materials containing an elliptic hole or a crack mainly focus on remote uniform tensile loads.In order to have a better understanding for the fracture behavior of piezoelectric materials under different loading conditions,theoretical and numerical solutions are presented for an elliptic hole or a crack in transversely isotropic piezoelectric materials subjected to uniform internal pressure and remote electro-mechanical loads.On the basis of the complex variable approach,analytical solutions of the elastic and electric fields inside and outside the defect are derived by satisfying permeable electric boundary condition at the surface of the elliptical hole.As an example of PZT-4 ceramics,numerical results of electro-elastic fields inside and outside the crack under various electric boundary conditions and electro-mechanical loads are given,and graphs of the electro-elastic fields in the vicinity of the crack tip are presented.The non-singular term is compared to the asymptotic one in the figures.It is shown that the dielectric constant of the air in the crack has no effect on the electric displacement component perpendicular to the crack,and the stresses in the piezoelectric material depend on the material properties and the mechanical loads on the crack surface and at infinity,but not on the electric loads at infinity.The figures obtained are strikingly similar to the available results.Unlike the existing work,the existence of electric fields inside an elliptic hole or a crack is considered,and the piezoelectric solid is subjected to complicated electro-mechanical loads.展开更多
Using the complex variable function method and the technique of conformal mapping, the anti-plane shear problem of an elliptic hole with asymmetric colfinear cracks in a one-dimensional hexagonal quasi-crystal is solv...Using the complex variable function method and the technique of conformal mapping, the anti-plane shear problem of an elliptic hole with asymmetric colfinear cracks in a one-dimensional hexagonal quasi-crystal is solved, and the exact analytic solutions of the stress intensity factors (SIFs) for mode Ⅲ problem are obtained. Under the limiting conditions, the present results reduce to the Griffith crack and many new results obtained as well, such as the circular hole with asymmetric collinear cracks, the elliptic hole with a straight crack, the mode T crack, the cross crack and so on. As far as the phonon field is concerned, these results, which play an important role in many practical and theoretical applications, are shown to be in good agreement with the classical results.展开更多
The existing analytical solutions are extended to obtain the stress fields and the stress intensity factors(SIFs) of two unequal aligned cracks emanating from an elliptical hole in an infinite isotropic plane. A confo...The existing analytical solutions are extended to obtain the stress fields and the stress intensity factors(SIFs) of two unequal aligned cracks emanating from an elliptical hole in an infinite isotropic plane. A conformal mapping is proposed and combined with the complex variable method. Due to some difficulties in the calculation of the stress function, the mapping function is approximated and simplified via the applications of the series expansion. To validate the obtained solution, several examples are analyzed with the proposed method, the finite element method, etc. In addition, the effects of the lengths of the cracks and the ratio of the semi-axes of the elliptical hole(a/b) on the SIFs are studied. The results show that the present analytical solution is applicable to the SIFs for small cracks.展开更多
Plate shaped sandstones containing two fabricated circular holes that were filled with gypsum and high-strength concrete respectively were prepared for studying the effects of ligament length L ligament incline angle ...Plate shaped sandstones containing two fabricated circular holes that were filled with gypsum and high-strength concrete respectively were prepared for studying the effects of ligament length L ligament incline angle α, as well as filling modes on their strength properties and failure modes. The results show that the initial cracks can be categorized as wing crack, axial tensile crack and curved tensile crack. The failure modes of ligaments can be categorized as mode of single inclined crack, mode of single axial crack and mode of two parallel cracks. The final failure modes of all specimens can be categorized as the tension-shear mixed failure and shear failure. The strength of inclusions shows little influence on the final failure modes of specimens, while the failure modes vary with L and α. When α is a fixed value, the peak strength σc and elastic modulus Ec of tested specimens increase firstly with increasing L and reaches to the maximum value at L of 16 mm, then declines. When L is a fixed value, σc declines firstly and then turns to increase as α increases to 75° from 45°, while Ec increases linearly. The axial stress σp performs the similar variation trends with those of σc versus increasing L and α when ligaments fail.展开更多
Exact solutions in form of elementary functions were derived for the stress and electric displacement intensity factors of a circular crack in a transversely isotropic piezoelectric space interacting with various stre...Exact solutions in form of elementary functions were derived for the stress and electric displacement intensity factors of a circular crack in a transversely isotropic piezoelectric space interacting with various stress and charge sources: force dipoles, electric dipoles, moments, force dilatation and rotation. The circular crack includes penny-shaped crack and external circular crack and the locations and orientations of these resultant sources with respect to the crack are arbitrary. Such stress and charge sources may model defects like vacancies, foreign particles, and dislocations. Numerical results are presented at last.展开更多
Based on the complex potential method, the Greed’s functions of the plane problem in transversely isotropic piezoelectric media with an elliptic hole are obtained in terms of exact electric boundary conditions at th...Based on the complex potential method, the Greed’s functions of the plane problem in transversely isotropic piezoelectric media with an elliptic hole are obtained in terms of exact electric boundary conditions at the rim of the hole. When foe elliptic hole degenerates into a crack, the fundamental solutions for the field intensity factors arc given. The general solutions for concentrated and distributed loads applied on the surface of the hole or crack are produced through the superposition of fundamental solutions With the aid of these solutions , some erroneous results provided previously in other works are pointed out More important is that these solutions can be used as the fundamental solutions of boundary element method to solve more practical problems in piezoelectric media.展开更多
By means of the complex variable function method and the technique of conformal mapping, the anti-plane shear problem of an elliptic hole with two straight cracks in one-dimensional hexagonal quasicrystals is investig...By means of the complex variable function method and the technique of conformal mapping, the anti-plane shear problem of an elliptic hole with two straight cracks in one-dimensional hexagonal quasicrystals is investigated. The solution of the stress intensity factor (SIF) for mode III problem has been found. Under the condition of limitation, both the known results and the SIF solution at the crack tip of a circular hole with two straight cracks and cross crack in one-dimensional hexagonal quasicrystals can be obtained.展开更多
The interaction between screw dislocations and two asymmetrical interfacial cracks emanating from an elliptic hole under loads at infinity is studied. The closed-form solution is derived for complex potentials. The st...The interaction between screw dislocations and two asymmetrical interfacial cracks emanating from an elliptic hole under loads at infinity is studied. The closed-form solution is derived for complex potentials. The stress intensity factor and the critical applied stress for the dislocation emission are also calculated. In the limiting cases, well-known results can be obtained from the present solutions. Moreover, new exact solutions for a screw dislocation interacting with some complicated cracks are derived. The results show that the shielding effect increases with the increase in the length of the other cracks and the minor semi axis, but decreases with the increase of dislocation azimuth. The repulsion acting on the dislocation from the other phase and the other crack extend in the horizontal direction, which makes the dislocation emission at the crack tip take place more easily, but the minor semi axis of the elliptical hole extending in the vertical direction makes it more difficult.展开更多
An axisymmetric tangent stress is applied to a lateral surface of a multilayered elastic finite cylinder with a fixed bottom face. The problem is solved for an arbitrary number of layers. The layers are coaxial, and t...An axisymmetric tangent stress is applied to a lateral surface of a multilayered elastic finite cylinder with a fixed bottom face. The problem is solved for an arbitrary number of layers. The layers are coaxial, and the conditions of an ideal mechanical contact are fulfilled between them. A circular crack is situated parallel to the cylinder’s faces in the internal layer with branches free from stress. The upper face of the cylinder is also free from stress. Concretization of the problem is done on examples of two-and three-layered cylinders. An analysis of cylinders’ stress state is conducted and the stress intensity factor is evaluated depending on the crack’s geometry, its location and ratio of the shear modulus. Advantages of the proposed method include reduction of the solution constants’ number regardless of the number of layers, and presentation of the mechanical characteristics in a form of uniformly convergent series.展开更多
The weakly singular integral equation sued to solve the problem ofthe curved crack crossing the boundary of the antiplane circularinclusion is presented. Using the principal part analysis method ofthe Cauchy type inte...The weakly singular integral equation sued to solve the problem ofthe curved crack crossing the boundary of the antiplane circularinclusion is presented. Using the principal part analysis method ofthe Cauchy type integral equation, the singular stress index at theintersection and the singular stress of angular Regions near theintersection are obtained. By using the singular stress obtained, thestress intensity factor at The intersection is defined. After thenumerical solution of the integral equation, the stress intensityfactors at The end points of the crack and intersection areobtainable.展开更多
In this paper the writer uses Muskhelishvili single-layer potential function solution and single crack solution for the torsion problem of a circular cylinder to discuss the torsion problem of a composite cylinder wit...In this paper the writer uses Muskhelishvili single-layer potential function solution and single crack solution for the torsion problem of a circular cylinder to discuss the torsion problem of a composite cylinder with an internal crack, and the problem is reduced to -a set of mixed-type integral equation with generalized Cauchy-kernel. Then, by using the integration formula of Gauss-Jacobi, the numerical method is established and several numerical examples are calculated. The torsional rigidity and the stress intensity factors are obtained. The results of these examples fit the results obtained by the previous papers better.展开更多
Numerous researches have focused on the physical behavior of an elastic material in the vicinity of a single hole under the assumption that the interaction effects arising from the introduction of multiple holes remai...Numerous researches have focused on the physical behavior of an elastic material in the vicinity of a single hole under the assumption that the interaction effects arising from the introduction of multiple holes remain negligible if the holes are placed sufficiently far from each other.In an effort to understand hole interaction effects on heat conduction and thermal stress,we consider the case when two circular holes are embedded in an infinite elastic material and use complex variable methods together with numerical analysis to obtain solutions describing temperature and elastic fields in the vicinity of the two circular holes.The results indicate that the interaction effects on temperature distribution and stress strongly depend on the relative size of the two holes and the distance placed between them but not on the actual size of the holes.展开更多
In this paper, Muskhelishvili complex function theory and boundary collocation method are used to calculate the stress intensity factors (SIF) of a plate with two cracks emanating from an arbitrary hole. The calculate...In this paper, Muskhelishvili complex function theory and boundary collocation method are used to calculate the stress intensity factors (SIF) of a plate with two cracks emanating from an arbitrary hole. The calculated examples include a circular, elliptical, rectangular, or rhombic hole in a plate. The principle and procedure by the method is not only rather simple, but also has good accuracy. The SIF values calculated compare very favorably with the existing solutions. A t the same time,the method can be used far different finite plate with two cracks emanating from a hole with more complex geometrical and loading conditions. It is an effective unified approach for this kind of fracture problems.展开更多
The three-dimensional stress concentration factor (SCF) at the edge of elliptical and circular holes in infinite plates under remote tension has been extensively investigated considering the variations of plate thickn...The three-dimensional stress concentration factor (SCF) at the edge of elliptical and circular holes in infinite plates under remote tension has been extensively investigated considering the variations of plate thickness, hole dimensions and material properties, such as the Poisson’s coefficient. This study employs three dimensional finite element modeling to numerically investigate the effect of plate width on the behavior of the SCF across the thickness of linear elastic isotropic plates with a through-the-thickness circular hole under remote tension. The problem is governed by two geometric non-dimensional parameters, i.e., the plate half-width to hole radius (W/r) and the plate thickness to hole radius (B/r) ratios. It is shown that for thin plates the value of the SCF is nearly constant throughout the thickness for any plate width. As the plate thickness increases, the point of maximum SCF shifts from the plate middle plane and approaches the free surface. When the ratio of plate half-width to hole radius (W/r) is greater than four, the maximum SCF was observed to approximate the theoretical value determined for infinite plates. When the plate width is reduced, the maximum SCF values significantly increase. A polynomial curve fitting was employed on the numerical results to generate empirical formulas for the maximum and surface SCFs as a function of W/r and B/r. These equations can be applied, with reasonable accuracy, to practical problems of structural strength and fatigue, for instance.展开更多
基金Projects(52074116,51804113)supported by the National Natural Science Foundation of China。
文摘In order to study and analyze the stability of engineering rock mass under non-uniform triaxial stress and obtain the evolution mechanism of the whole process of fracture,a series of conventional triaxial compression tests and three-dimensional numerical simulation tests were carried out on hollow granite specimens with different diameters.The bearing capacity of hollow cylindrical specimen is analyzed based on elasticity.The results show that:1)Under low confining pressure,the tensile strain near the hole of the hollow cylindrical specimen is obvious,and the specimen deformation near the hole is significant.At the initial stage of loading,the compressive stress and compressive strain of the specimen are widely distributed.With the progress of loading,the number of microelements subjected to tensile strain gradually increases,and even spreads throughout the specimen;2)Under conventional triaxial compression,the cracking position of hollow cylinder specimens is concentrated in the upper and lower parts,and the final fracture mode is generally compressive shear failure.The final fracture mode of complete specimen is generally tensile fracture.Under high confining pressure,the tensile cracks of the sample are concentrated in the upper and lower parts and are not connected,while the cracks of the upper and lower parts of the intact sample will expand and connect to form a fracture surface;3)In addition,the tensile crack widths of intact and hollow cylindrical specimens under low confining pressure are larger than those under high confining pressure.
基金supported by the Open Fund of the State Key Laboratory of Advanced Optical Communication Systems and Networks (SJTU)(Grant No. 2023GZKF018)the Open Fund of IPOC (BUPT)(Grant No. IPOC2021B03)+4 种基金the National Natural Science Foundation of China (NSFC)(Grant No. 11974188)the China Postdoctoral Science Foundation (Grant Nos. 2021T140339 and 2018M632345)the Jiangsu Province Postdoctoral Science Foundation (Grant No. 2021K617C)the Postgraduate Research and Practice Innovation Program of Jiangsu Province (Grant No.KYCX22_0945)the Qing Lan Project of Jiangsu Province
文摘A photonic crystal nanobeam cavity(M-PCNC)with a structure incorporating a mixture of diamond-shaped and circular air holes is pro-posed.The performance of the cavity is simulated and studied theoretically.Using thefinite-difference time-domain method,the parameters of the M-PCNC,including cavity thickness and width,lattice constant,and radii and numbers of holes,are optimized,with the quality factor Q and mode volume Vm as performance indicators.Mutual modulation of the lattice constant and hole radius enable the proposed M-PCNC to realize outstanding performance.The optimized cavity possesses a high quality factor Q 1.45105 and an ultra-small mode=×volume Vm 0.01(λ/n)[Zeng et al.,Opt Lett 2023:48;3981–3984]in the telecommunications wavelength range.Light can be progres-=sively squeezed in both the propagation direction and the perpendicular in-plane direction by a series of interlocked anti-slots and slots in the diamond-shaped hole structure.Thereby,the energy can be confined within a small mode volume to achieve an ultra-high Q/Vm ratio.
文摘This paper employes variable function method and the technique of conformal mappingto discuss the anti-plane problem of a circular hole with three unequal cracksin a one-dimensional (1D) hexagonal piezoelectric quasicrystal. Based on the piezoelectricityfundamental equations of quasicrystal materials and the symmetry of1D hexagonal quasicrystal and its linear piezoelectricity effect, 1D hexagonal quasicrystalcontrol equations of anti-plane problem are derived. Applying Cauchyintegral formula, the analytical expressions for the crack tip filed intensity factorsare presented with the assumption that the crack are electrical impermeable andelectrical permeable. With the variation of the hole-size and the crack length, someof the new model of crack are obtained. In the absence of the electric load, theresults match with the classical ones. The numerical results indicate the effects ofgeometric parameters on the field intensity factors. It is verified that the horizontalcrack length and the circle radius can easily promote crack growth. Researchon such issues will provide reliable theoretical value for the engineering materialspreparation and application.
文摘The Non-explosive expansion material (NEEM) is a method more environmentally friendly than the harmful conventional rock fracturing techniques. However, it is slower and very costly. Thus, any means of economizing their use is very desirable. This paper investigates the crack growth between two neighboring holes of a gneiss rock internally pressurized by NEEM mixed with water with the aim to evaluate the influence of holes spacing (center-to-center distance), on the initiation and growth of cracks. Field experimental results reveal that crack starts earlier and grows faster with increasing ambient temperature. But when the ambient temperature is above 28<span style="white-space:nowrap;">°</span>C, the NEEM is “blown out” of the holes. At these ambient temperatures, the surrounding rocks are hot and cannot dissipate efficiently the heat generated by the hydration reaction. The best filling time was found to be in the evening when the daily hot temperature has drooped. The time to first crack increases as hole diameter decrease<span style="font-family:Verdana;">s</span><span style="font-family:Verdana;">. The 3D numerical modeling and simulation of crack growth between two neighboring holes internally pressurized by NEEM using ABAQUS (XFEM/CZM) software show</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> a good agreement with the theoretical and experimental results.</span>
基金supported by Hebei Provincial Natural Science Foundation of China (Grant No. A2011210033)Foundation of Hebei Education Department of China (Grant No. ZH2011116)Hebei Provincial Research Program for Higher Education and Teaching Reformof China (Grant No. 103024)
文摘The existing investigations on piezoelectric materials containing an elliptic hole or a crack mainly focus on remote uniform tensile loads.In order to have a better understanding for the fracture behavior of piezoelectric materials under different loading conditions,theoretical and numerical solutions are presented for an elliptic hole or a crack in transversely isotropic piezoelectric materials subjected to uniform internal pressure and remote electro-mechanical loads.On the basis of the complex variable approach,analytical solutions of the elastic and electric fields inside and outside the defect are derived by satisfying permeable electric boundary condition at the surface of the elliptical hole.As an example of PZT-4 ceramics,numerical results of electro-elastic fields inside and outside the crack under various electric boundary conditions and electro-mechanical loads are given,and graphs of the electro-elastic fields in the vicinity of the crack tip are presented.The non-singular term is compared to the asymptotic one in the figures.It is shown that the dielectric constant of the air in the crack has no effect on the electric displacement component perpendicular to the crack,and the stresses in the piezoelectric material depend on the material properties and the mechanical loads on the crack surface and at infinity,but not on the electric loads at infinity.The figures obtained are strikingly similar to the available results.Unlike the existing work,the existence of electric fields inside an elliptic hole or a crack is considered,and the piezoelectric solid is subjected to complicated electro-mechanical loads.
基金supported by the National Natural Science Foundation of China (Grant No 10761005)the Inner Mongolia Natural Science Foundation of China (Grant No 200607010104)
文摘Using the complex variable function method and the technique of conformal mapping, the anti-plane shear problem of an elliptic hole with asymmetric colfinear cracks in a one-dimensional hexagonal quasi-crystal is solved, and the exact analytic solutions of the stress intensity factors (SIFs) for mode Ⅲ problem are obtained. Under the limiting conditions, the present results reduce to the Griffith crack and many new results obtained as well, such as the circular hole with asymmetric collinear cracks, the elliptic hole with a straight crack, the mode T crack, the cross crack and so on. As far as the phonon field is concerned, these results, which play an important role in many practical and theoretical applications, are shown to be in good agreement with the classical results.
文摘The existing analytical solutions are extended to obtain the stress fields and the stress intensity factors(SIFs) of two unequal aligned cracks emanating from an elliptical hole in an infinite isotropic plane. A conformal mapping is proposed and combined with the complex variable method. Due to some difficulties in the calculation of the stress function, the mapping function is approximated and simplified via the applications of the series expansion. To validate the obtained solution, several examples are analyzed with the proposed method, the finite element method, etc. In addition, the effects of the lengths of the cracks and the ratio of the semi-axes of the elliptical hole(a/b) on the SIFs are studied. The results show that the present analytical solution is applicable to the SIFs for small cracks.
基金Project(2017YFC0603001)supported by the High-tech Research and Development Program of ChinaProject(51374198)supported by the National Natural Science Foundation of China
文摘Plate shaped sandstones containing two fabricated circular holes that were filled with gypsum and high-strength concrete respectively were prepared for studying the effects of ligament length L ligament incline angle α, as well as filling modes on their strength properties and failure modes. The results show that the initial cracks can be categorized as wing crack, axial tensile crack and curved tensile crack. The failure modes of ligaments can be categorized as mode of single inclined crack, mode of single axial crack and mode of two parallel cracks. The final failure modes of all specimens can be categorized as the tension-shear mixed failure and shear failure. The strength of inclusions shows little influence on the final failure modes of specimens, while the failure modes vary with L and α. When α is a fixed value, the peak strength σc and elastic modulus Ec of tested specimens increase firstly with increasing L and reaches to the maximum value at L of 16 mm, then declines. When L is a fixed value, σc declines firstly and then turns to increase as α increases to 75° from 45°, while Ec increases linearly. The axial stress σp performs the similar variation trends with those of σc versus increasing L and α when ligaments fail.
基金Project supported by the National Natural Science Foundation of China (No.10472102)Special Foundation of City University of HongKong (No.9610022)Outstanding Young Teacher Foundation of Hunan Province (No.521105236)the Yu-Ying Foundation of Hunan University (No.531103011110)
文摘Exact solutions in form of elementary functions were derived for the stress and electric displacement intensity factors of a circular crack in a transversely isotropic piezoelectric space interacting with various stress and charge sources: force dipoles, electric dipoles, moments, force dilatation and rotation. The circular crack includes penny-shaped crack and external circular crack and the locations and orientations of these resultant sources with respect to the crack are arbitrary. Such stress and charge sources may model defects like vacancies, foreign particles, and dislocations. Numerical results are presented at last.
文摘Based on the complex potential method, the Greed’s functions of the plane problem in transversely isotropic piezoelectric media with an elliptic hole are obtained in terms of exact electric boundary conditions at the rim of the hole. When foe elliptic hole degenerates into a crack, the fundamental solutions for the field intensity factors arc given. The general solutions for concentrated and distributed loads applied on the surface of the hole or crack are produced through the superposition of fundamental solutions With the aid of these solutions , some erroneous results provided previously in other works are pointed out More important is that these solutions can be used as the fundamental solutions of boundary element method to solve more practical problems in piezoelectric media.
基金Project supported by the National Natural Science Foundation of China(No.10761005)the Natural Science Foundation of Inner Mongolia Autonomous Region(No.200607010104)
文摘By means of the complex variable function method and the technique of conformal mapping, the anti-plane shear problem of an elliptic hole with two straight cracks in one-dimensional hexagonal quasicrystals is investigated. The solution of the stress intensity factor (SIF) for mode III problem has been found. Under the condition of limitation, both the known results and the SIF solution at the crack tip of a circular hole with two straight cracks and cross crack in one-dimensional hexagonal quasicrystals can be obtained.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11172094 and 11172095)the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-11-0122)+1 种基金the Science Fund of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, China (Grant Nos. 61075005 and 51075001)the Fundamental Research Funds for the Central Universities (Hunan University), China
文摘The interaction between screw dislocations and two asymmetrical interfacial cracks emanating from an elliptic hole under loads at infinity is studied. The closed-form solution is derived for complex potentials. The stress intensity factor and the critical applied stress for the dislocation emission are also calculated. In the limiting cases, well-known results can be obtained from the present solutions. Moreover, new exact solutions for a screw dislocation interacting with some complicated cracks are derived. The results show that the shielding effect increases with the increase in the length of the other cracks and the minor semi axis, but decreases with the increase of dislocation azimuth. The repulsion acting on the dislocation from the other phase and the other crack extend in the horizontal direction, which makes the dislocation emission at the crack tip take place more easily, but the minor semi axis of the elliptical hole extending in the vertical direction makes it more difficult.
基金Project supported by the Ukrainian Department of Science and Education(No.0115U003211)
文摘An axisymmetric tangent stress is applied to a lateral surface of a multilayered elastic finite cylinder with a fixed bottom face. The problem is solved for an arbitrary number of layers. The layers are coaxial, and the conditions of an ideal mechanical contact are fulfilled between them. A circular crack is situated parallel to the cylinder’s faces in the internal layer with branches free from stress. The upper face of the cylinder is also free from stress. Concretization of the problem is done on examples of two-and three-layered cylinders. An analysis of cylinders’ stress state is conducted and the stress intensity factor is evaluated depending on the crack’s geometry, its location and ratio of the shear modulus. Advantages of the proposed method include reduction of the solution constants’ number regardless of the number of layers, and presentation of the mechanical characteristics in a form of uniformly convergent series.
基金National Natural Science Foundation of China(No.59879012)the project of Chinese Foundation of State Education Commission(No.98024832)
文摘The weakly singular integral equation sued to solve the problem ofthe curved crack crossing the boundary of the antiplane circularinclusion is presented. Using the principal part analysis method ofthe Cauchy type integral equation, the singular stress index at theintersection and the singular stress of angular Regions near theintersection are obtained. By using the singular stress obtained, thestress intensity factor at The intersection is defined. After thenumerical solution of the integral equation, the stress intensityfactors at The end points of the crack and intersection areobtainable.
基金P.H.D.Foundation of the State Education Commision of China
文摘In this paper the writer uses Muskhelishvili single-layer potential function solution and single crack solution for the torsion problem of a circular cylinder to discuss the torsion problem of a composite cylinder with an internal crack, and the problem is reduced to -a set of mixed-type integral equation with generalized Cauchy-kernel. Then, by using the integration formula of Gauss-Jacobi, the numerical method is established and several numerical examples are calculated. The torsional rigidity and the stress intensity factors are obtained. The results of these examples fit the results obtained by the previous papers better.
基金the National Natural Science Foundation of China(No.11902116)the China Postdoctoral Science Foundation(No.2020M671313)the Natural Sciences and Engineering Research Council of Canada(No.RGPIN 155112)。
文摘Numerous researches have focused on the physical behavior of an elastic material in the vicinity of a single hole under the assumption that the interaction effects arising from the introduction of multiple holes remain negligible if the holes are placed sufficiently far from each other.In an effort to understand hole interaction effects on heat conduction and thermal stress,we consider the case when two circular holes are embedded in an infinite elastic material and use complex variable methods together with numerical analysis to obtain solutions describing temperature and elastic fields in the vicinity of the two circular holes.The results indicate that the interaction effects on temperature distribution and stress strongly depend on the relative size of the two holes and the distance placed between them but not on the actual size of the holes.
文摘In this paper, Muskhelishvili complex function theory and boundary collocation method are used to calculate the stress intensity factors (SIF) of a plate with two cracks emanating from an arbitrary hole. The calculated examples include a circular, elliptical, rectangular, or rhombic hole in a plate. The principle and procedure by the method is not only rather simple, but also has good accuracy. The SIF values calculated compare very favorably with the existing solutions. A t the same time,the method can be used far different finite plate with two cracks emanating from a hole with more complex geometrical and loading conditions. It is an effective unified approach for this kind of fracture problems.
基金the support of the National Council for Scientific and Technological Development(CNPq)for this work.
文摘The three-dimensional stress concentration factor (SCF) at the edge of elliptical and circular holes in infinite plates under remote tension has been extensively investigated considering the variations of plate thickness, hole dimensions and material properties, such as the Poisson’s coefficient. This study employs three dimensional finite element modeling to numerically investigate the effect of plate width on the behavior of the SCF across the thickness of linear elastic isotropic plates with a through-the-thickness circular hole under remote tension. The problem is governed by two geometric non-dimensional parameters, i.e., the plate half-width to hole radius (W/r) and the plate thickness to hole radius (B/r) ratios. It is shown that for thin plates the value of the SCF is nearly constant throughout the thickness for any plate width. As the plate thickness increases, the point of maximum SCF shifts from the plate middle plane and approaches the free surface. When the ratio of plate half-width to hole radius (W/r) is greater than four, the maximum SCF was observed to approximate the theoretical value determined for infinite plates. When the plate width is reduced, the maximum SCF values significantly increase. A polynomial curve fitting was employed on the numerical results to generate empirical formulas for the maximum and surface SCFs as a function of W/r and B/r. These equations can be applied, with reasonable accuracy, to practical problems of structural strength and fatigue, for instance.