Recognizing human activity(HAR)from data in a smartphone sensor plays an important role in the field of health to prevent chronic diseases.Daily and weekly physical activities are recorded on the smartphone and tell t...Recognizing human activity(HAR)from data in a smartphone sensor plays an important role in the field of health to prevent chronic diseases.Daily and weekly physical activities are recorded on the smartphone and tell the user whether he is moving well or not.Typically,smartphones and their associated sensing devices operate in distributed and unstable environments.Therefore,collecting their data and extracting useful information is a significant challenge.In this context,the aimof this paper is twofold:The first is to analyze human behavior based on the recognition of physical activities.Using the results of physical activity detection and classification,the second part aims to develop a health recommendation system to notify smartphone users about their healthy physical behavior related to their physical activities.This system is based on the calculation of calories burned by each user during physical activities.In this way,conclusions can be drawn about a person’s physical behavior by estimating the number of calories burned after evaluating data collected daily or even weekly following a series of physical workouts.To identify and classify human behavior our methodology is based on artificial intelligence models specifically deep learning techniques like Long Short-Term Memory(LSTM),stacked LSTM,and bidirectional LSTM.Since human activity data contains both spatial and temporal information,we proposed,in this paper,to use of an architecture allowing the extraction of the two types of information simultaneously.While Convolutional Neural Networks(CNN)has an architecture designed for spatial information,our idea is to combine CNN with LSTM to increase classification accuracy by taking into consideration the extraction of both spatial and temporal data.The results obtained achieved an accuracy of 96%.On the other side,the data learned by these algorithms is prone to error and uncertainty.To overcome this constraint and improve performance(96%),we proposed to use the fusion mechanisms.The last combines deep learning classifiers tomodel non-accurate and ambiguous data to obtain synthetic information to aid in decision-making.The Voting and Dempster-Shafer(DS)approaches are employed.The results showed that fused classifiers based on DS theory outperformed individual classifiers(96%)with the highest accuracy level of 98%.Also,the findings disclosed that participants engaging in physical activities are healthy,showcasing a disparity in the distribution of physical activities between men and women.展开更多
Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study pr...Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study presents a state-of-the-art review of the DFOS applications for monitoring and assessing the deformation behavior of typical tunnel infrastructure,including bored tunnels,conventional tunnels,as well as immersed and cut-and-cover tunnels.DFOS systems based on Brillouin and Rayleigh scattering principles are both considered.When implementing DFOS monitoring,the fiber optic cable can be primarily installed along transverse and longitudinal directions to(1)measure distributed strains by continuously adhering the fiber to the structure’s surface or embedding it in the lining,or(2)measure point displacements by spot-anchoring it on the lining surface.There are four critical aspects of DFOS monitoring,including proper selection of the sensing fiber,selection of the measuring principle for the specific application,design of an effective sensor layout,and establishment of robust field sensor instrumentation.These four issues are comprehensively discussed,and practical suggestions are provided for the implementation of DFOS in tunnel infrastructure monitoring.展开更多
In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory...In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory tubes by means of routing decisions complying with traffic congestion criteria. To this end, a novel distributed control architecture is conceived by taking advantage of two methodologies: deep reinforcement learning and model predictive control. On one hand, the routing decisions are obtained by using a distributed reinforcement learning algorithm that exploits available traffic data at each road junction. On the other hand, a bank of model predictive controllers is in charge of computing the more adequate control action for each involved vehicle. Such tasks are here combined into a single framework:the deep reinforcement learning output(action) is translated into a set-point to be tracked by the model predictive controller;conversely, the current vehicle position, resulting from the application of the control move, is exploited by the deep reinforcement learning unit for improving its reliability. The main novelty of the proposed solution lies in its hybrid nature: on one hand it fully exploits deep reinforcement learning capabilities for decisionmaking purposes;on the other hand, time-varying hard constraints are always satisfied during the dynamical platoon evolution imposed by the computed routing decisions. To efficiently evaluate the performance of the proposed control architecture, a co-design procedure, involving the SUMO and MATLAB platforms, is implemented so that complex operating environments can be used, and the information coming from road maps(links,junctions, obstacles, semaphores, etc.) and vehicle state trajectories can be shared and exchanged. Finally by considering as operating scenario a real entire city block and a platoon of eleven vehicles described by double-integrator models, several simulations have been performed with the aim to put in light the main f eatures of the proposed approach. Moreover, it is important to underline that in different operating scenarios the proposed reinforcement learning scheme is capable of significantly reducing traffic congestion phenomena when compared with well-reputed competitors.展开更多
In this paper,distributed model predictive control(DMPC) for island DC micro-grids(MG) with wind/photovoltaic(PV)/battery power is proposed,which coordinates all distributed generations(DG) to stabilize the bus voltag...In this paper,distributed model predictive control(DMPC) for island DC micro-grids(MG) with wind/photovoltaic(PV)/battery power is proposed,which coordinates all distributed generations(DG) to stabilize the bus voltage together with the insurance of having computational efficiency under a real-time requirement.Based on the feedback of the bus voltage,the deviation of the current is dispatched to each DG according to cost over the prediction horizon.Moreover,to avoid the excessive fluctuation of the battery power,both the discharge-charge switching times and costs are considered in the model predictive control(MPC) optimization problems.A Lyapunov constraint with a time-varying steady-state is designed in each local MPC to guarantee the stabilization of the entire system.The voltage stabilization of the MG is achieved by this strategy with the cooperation of DGs.The numeric results of applying the proposed method to a MG of the Shanghai Power Supply Company shows the effectiveness of the distributed economic MPC.展开更多
We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that prov...We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that provide spatially averaged state measurements can be used to improve state estimation in the network.For the purpose of decreasing the update frequency of controller and unnecessary sampled data transmission, an efficient dynamic event-triggered control policy is constructed.In an event-triggered system, when an error signal exceeds a specified time-varying threshold, it indicates the occurrence of a typical event.The global asymptotic stability of the event-triggered closed-loop system and the boundedness of the minimum inter-event time can be guaranteed.Based on the linear quadratic optimal regulator, the actuator selects the optimal displacement only when an event occurs.A simulation example is finally used to verify that the effectiveness of such a control strategy can enhance the system performance.展开更多
The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scatt...The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scattering have been extensively deployed in structural health monitoring due to their advantages,such as lightweight and ease of embedding.However,identifying the precise location of damage from the optical fiber signals remains a critical challenge.In this paper,a novel approach which namely Modified Sliding Window Principal Component Analysis(MSWPCA)was proposed to facilitate automatic damage identification and localization via distributed optical fiber sensors.The proposed method is able to extract signal characteristics interfered by measurement noise to improve the accuracy of damage detection.Specifically,we applied the MSWPCA method to monitor and analyze the debonding propagation process in honeycomb sandwich panel structures.Our findings demonstrate that the training model exhibits high precision in detecting the location and size of honeycomb debonding,thereby facilitating reliable and efficient online assessment of the structural health state.展开更多
This study proposed a new real-time manufacturing process monitoring method to monitor and detect process shifts in manufacturing operations.Since real-time production process monitoring is critical in today’s smart ...This study proposed a new real-time manufacturing process monitoring method to monitor and detect process shifts in manufacturing operations.Since real-time production process monitoring is critical in today’s smart manufacturing.The more robust the monitoring model,the more reliable a process is to be under control.In the past,many researchers have developed real-time monitoring methods to detect process shifts early.However,thesemethods have limitations in detecting process shifts as quickly as possible and handling various data volumes and varieties.In this paper,a robust monitoring model combining Gated Recurrent Unit(GRU)and Random Forest(RF)with Real-Time Contrast(RTC)called GRU-RF-RTC was proposed to detect process shifts rapidly.The effectiveness of the proposed GRU-RF-RTC model is first evaluated using multivariate normal and nonnormal distribution datasets.Then,to prove the applicability of the proposed model in a realmanufacturing setting,the model was evaluated using real-world normal and non-normal problems.The results demonstrate that the proposed GRU-RF-RTC outperforms other methods in detecting process shifts quickly with the lowest average out-of-control run length(ARL1)in all synthesis and real-world problems under normal and non-normal cases.The experiment results on real-world problems highlight the significance of the proposed GRU-RF-RTC model in modern manufacturing process monitoring applications.The result reveals that the proposed method improves the shift detection capability by 42.14%in normal and 43.64%in gamma distribution problems.展开更多
Lithium ion batteries are complicated distributed parameter systems that can be described preferably by partial differential equations and a field theory. To reduce the solution difficulty and the calculation amount, ...Lithium ion batteries are complicated distributed parameter systems that can be described preferably by partial differential equations and a field theory. To reduce the solution difficulty and the calculation amount, if a distributed parameter system is described by ordinary differential equations (ODE) during the analysis and the design of distributed parameter system, the reliability of the system description will be reduced, and the systemic errors will be introduced. Studies on working condition real-time monitoring can improve the security because the rechargeable LIBs are widely used in many electronic systems and electromechanical equipment. Single particle model (SPM) is the simplification of LIB under some approximations, and can estimate the working parameters of a LIB at the faster simulation speed. A LIB modelling algorithm based on PDEs and SPM is proposed to monitor the working condition of LIBs in real time. Although the lithium ion concentration is an unmeasurable distributed parameter in the anode of LIB, the working condition monitoring model can track the real time lithium ion concentration in the anode of LIB, and calculate the residual which is the difference between the ideal data and the measured data. A fault alarm can be triggered when the residual is beyond the preset threshold. A simulation example verifies that the effectiveness and the accuracy of the working condition real-time monitoring model of LIB based on PDEs and SPM.展开更多
This paper describes a hierarchical architecture and a high-performance and interoperability protocol for centralized monitoring and controlling systems (CMCS) . The protocol we proposed can interoperate different mon...This paper describes a hierarchical architecture and a high-performance and interoperability protocol for centralized monitoring and controlling systems (CMCS) . The protocol we proposed can interoperate different monitoring and controlling systems constructed by different companies, each with different functions and communication protocols. The protocol reduces the amount of traffic and has real-time and high-perfor-mance advantages. The protocol was implemented in CMCS for telecommunication power supply and air-condi-tioner used by the Telecommunication Bureau of Zhejiang Province. This paper deals with the hierarchical architecture and function of CMCS and packet format, command ID, and SDL description of its protocol. We also discuss the properties of the interoperability and performance of the protocol in this paper.展开更多
The relationships and the features of integration between Enterprise ProcessMonitoring and Controlling System (EPMCS) and Enterprise Process Related Applications (EPRA) wereanalyzed. An integration architecture center...The relationships and the features of integration between Enterprise ProcessMonitoring and Controlling System (EPMCS) and Enterprise Process Related Applications (EPRA) wereanalyzed. An integration architecture centered on EPMCS was presented, in which there were fourlayers to connect from EPMCS to EPRA: EPMCS, application integration layer, transport layer andEPRA, and there were four layers used to etstablish integration: presentation layer, function layer,data layer and system layer. The frameworks to connect EPMCS and EPRA were designed, thatEnterprise-Independent Model (EIM), Enterprise-Specific Model (ESM) and meta-model to describe thesetwo models were defined. The method to integrate data based on XML was designed to exchange datafrom EPMCS to EPRA according to the mapping between EIM and ESM. The approches are suitable forintegrating EPMCS and systems in Product Data Management (PDM), project management and enterprisebusiness management.展开更多
The cooperative control and stability analysis problems for the multi-agent system with sampled com- munication are investigated. Distributed state feedback controllers are adopted for the cooperation of networked age...The cooperative control and stability analysis problems for the multi-agent system with sampled com- munication are investigated. Distributed state feedback controllers are adopted for the cooperation of networked agents. A theorem in the form of linear matrix inequalities(LMI) is derived to analyze the system stability. An- other theorem in the form of optimization problem subject to LMI constraints is proposed to design the controller, and then the algorithm is presented. The simulation results verify the validity and the effectiveness of the pro- posed approach.展开更多
The present paper deals with data-driven event-triggered control of a class of unknown discrete-time interconnected systems(a.k.a.network systems).To this end,we start by putting forth a novel distributed event-trigge...The present paper deals with data-driven event-triggered control of a class of unknown discrete-time interconnected systems(a.k.a.network systems).To this end,we start by putting forth a novel distributed event-triggering transmission strategy based on periodic sampling,under which a model-based stability criterion for the closed-loop network system is derived,by leveraging a discrete-time looped-functional approach.Marrying the model-based criterion with a data-driven system representation recently developed in the literature,a purely data-driven stability criterion expressed in the form of linear matrix inequalities(LMIs)is established.Meanwhile,the data-driven stability criterion suggests a means for co-designing the event-triggering coefficient matrix and the feedback control gain matrix using only some offline collected state-input data.Finally,numerical results corroborate the efficacy of the proposed distributed data-driven event-triggered network system(ETS)in cutting off data transmissions and the co-design procedure.展开更多
Battery energy storage systems(BESSs)are widely used in smart grids.However,power consumed by inner impedance and the capacity degradation of each battery unit become particularly severe,which has resulted in an incre...Battery energy storage systems(BESSs)are widely used in smart grids.However,power consumed by inner impedance and the capacity degradation of each battery unit become particularly severe,which has resulted in an increase in operating costs.The general economic dispatch(ED)algorithm based on marginal cost(MC)consensus is usually a proportional(P)controller,which encounters the defects of slow convergence speed and low control accuracy.In order to solve the distributed ED problem of the isolated BESS network with excellent dynamic and steady-state performance,we attempt to design a proportional integral(PI)controller with a reset mechanism(PI+R)to asymptotically promote MC consensus and total power mismatch towards 0 in this paper.To be frank,the integral term in the PI controller is reset to 0 at an appropriate time when the proportional term undergoes a zero crossing,which accelerates convergence,improves control accuracy,and avoids overshoot.The eigenvalues of the system under a PI+R controller is well analyzed,ensuring the regularity of the system and enabling the reset mechanism.To ensure supply and demand balance within the isolated BESSs,a centralized reset mechanism is introduced,so that the controller is distributed in a flow set and centralized in a jump set.To cope with Zeno behavior and input delay,a dwell time that the system resides in a flow set is given.Based on this,the system with input delays can be reduced to a time-delay free system.Considering the capacity limitation of the battery,a modified MC scheme with PI+R controller is designed.The correctness of the designed scheme is verified through relevant simulations.展开更多
The underground hydropower projects in Southwest China is characterized by large excavation sizes,high geostresses,complicated geological conditions and multiple construction processes.Various disasters such as collap...The underground hydropower projects in Southwest China is characterized by large excavation sizes,high geostresses,complicated geological conditions and multiple construction processes.Various disasters such as collapses,large deformations,rockbursts are frequently encountered,resulting in serious casualties and huge economic losses.This review mainly presents some representative results on microseismic(MS)monitoring and forecasting for disasters in hydropower underground engineering.First,a set of new denoising,spectral analysis,and location methods were developed for better identification and location of MS signals.Then,the tempo-spatial characteristics of MS events were analyzed to understand the relationship between field construction and damages of surrounding rocks.Combined with field construction,geological data,numerical simulation and parametric analysis of MS sources,the focal mechanism of MS events was revealed.A damage constitutive model considering MS fracturing size was put forward and feedback analysis considering the MS damage of underground surrounding rocks was conducted.Next,an MS multi-parameter based risk assessment and early warning method for dynamic disasters were proposed.The technology for control of the damage and deformation of underground surrounding rocks was proposed for underground caverns.Finally,two typical underground powerhouses were selected as case studies.These achievements can provide significant references for prevention and control of dynamic disasters for underground engineering with similar complicated geological conditions.展开更多
DC-DC converter-based multi-bus DC microgrids(MGs) in series have received much attention, where the conflict between voltage recovery and current balancing has been a hot topic. The lack of models that accurately por...DC-DC converter-based multi-bus DC microgrids(MGs) in series have received much attention, where the conflict between voltage recovery and current balancing has been a hot topic. The lack of models that accurately portray the electrical characteristics of actual MGs while is controller design-friendly has kept the issue active. To this end, this paper establishes a large-signal model containing the comprehensive dynamical behavior of the DC MGs based on the theory of high-order fully actuated systems, and proposes distributed optimal control based on this. The proposed secondary control method can achieve the two goals of voltage recovery and current sharing for multi-bus DC MGs. Additionally, the simple structure of the proposed approach is similar to one based on droop control, which allows this control technique to be easily implemented in a variety of modern microgrids with different configurations. In contrast to existing studies, the process of controller design in this paper is closely tied to the actual dynamics of the MGs. It is a prominent feature that enables engineers to customize the performance metrics of the system. In addition, the analysis of the stability of the closed-loop DC microgrid system, as well as the optimality and consensus of current sharing are given. Finally, a scaled-down solar and battery-based microgrid prototype with maximum power point tracking controller is developed in the laboratory to experimentally test the efficacy of the proposed control method.展开更多
Metal mineral resources play an indispensable role in the development of the national economy.Dynamic disasters in underground metal mines seriously threaten mining safety,which are major scientific and technological ...Metal mineral resources play an indispensable role in the development of the national economy.Dynamic disasters in underground metal mines seriously threaten mining safety,which are major scientific and technological problems to be solved urgently.In this article,the occurrence status and grand challenges of some typical dynamic disasters involving roof falling,spalling,collapse,large deformation,rockburst,surface subsidence,and water inrush in metal mines in China are systematically presented,the characteristics of mining-induced dynamic disasters are analyzed,the examples of dynamic disasters occurring in some metal mines in China are summarized,the occurrence mechanism,monitoring and early warning methods,and prevention and control techniques of these disasters are highlighted,and some new opinions,suggestions,and solutions are proposed simultaneously.Moreover,some shortcomings in current disaster research are pointed out,and the direction of efforts to improve the prevention and control level of dynamic disasters in China’s metal mines in the future is prospected.The integration of forward-looking key innovative theories and technologies in the abovementioned aspects will greatly enhance the cognitive level of disaster prevention and mitigation in China’s metal mining industry and achieve a significant shift from passive disaster relief to active disaster prevention.展开更多
The blockchain cross-chain is a significant technology for inter-chain interconnection and value transfer among different blockchain networks.Cross-chain overcomes the“information island”problem of the closed blockc...The blockchain cross-chain is a significant technology for inter-chain interconnection and value transfer among different blockchain networks.Cross-chain overcomes the“information island”problem of the closed blockchain network and is increasingly applied to multiple critical areas such as finance and the internet of things(IoT).Blockchain can be divided into three main categories of blockchain networks:public blockchains,private blockchains,and consortium blockchains.However,there are differences in block structures,consensus mechanisms,and complex working mechanisms among heterogeneous blockchains.The fragility of the cross-chain system itself makes the cross-chain system face some potential security and privacy threats.This paper discusses security defects on the cross-chain implementation mechanism,and discusses the impact of the structural features of blockchain networks on cross-chain security.In terms of cross-chain intercommunication,a cross-chain attack can be divided into a multi-chain combination attack,native chain attack,and inter-chain attack diffusion.Then various security threats and attack paths faced by the cross-chain system are analyzed.At last,the corresponding security defense methods of cross-chain security threats and future research directions for cross-chain applications are put forward.展开更多
In this editorial,we comment on the article by Zhang et al.Chronic kidney disease(CKD)presents a significant challenge in managing glycemic control,especially in diabetic patients with diabetic kidney disease undergoi...In this editorial,we comment on the article by Zhang et al.Chronic kidney disease(CKD)presents a significant challenge in managing glycemic control,especially in diabetic patients with diabetic kidney disease undergoing dialysis or kidney transplantation.Conventional markers like glycated haemoglobin(HbA1c)may not accurately reflect glycemic fluctuations in these populations due to factors such as anaemia and kidney dysfunction.This comprehensive review discusses the limitations of HbA1c and explores alternative methods,such as continuous glucose monitoring(CGM)in CKD patients.CGM emerges as a promising technology offering real-time or retrospective glucose concentration measure-ments and overcoming the limitations of HbA1c.Key studies demonstrate the utility of CGM in different CKD settings,including hemodialysis and peritoneal dialysis patients,as well as kidney transplant recipients.Despite challenges like sensor accuracy fluctuation,CGM proves valuable in monitoring glycemic trends and mitigating the risk of hypo-and hyperglycemia,to which CKD patients are prone.The review also addresses the limitations of CGM in CKD patients,emphasizing the need for further research to optimize its utilization in clinical practice.Altogether,this review advocates for integrating CGM into managing glycemia in CKD patients,highlighting its superiority over traditional markers and urging clinicians to consider CGM a valuable tool in their armamentarium.展开更多
In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,e...In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,emergency communication,and real-time scheduling,demands advanced capabilities in real-time perception,automated driving,and digitized services,which accelerate the integration and application of Artificial Intelligence(AI)in the HSR system.This paper first provides a brief overview of AI,covering its origin,evolution,and breakthrough applications.A comprehensive review is then given regarding the most advanced AI technologies and applications in three macro application domains of the HSR system:mechanical manufacturing and electrical control,communication and signal control,and transportation management.The literature is categorized and compared across nine application directions labeled as intelligent manufacturing of trains and key components,forecast of railroad maintenance,optimization of energy consumption in railroads and trains,communication security,communication dependability,channel modeling and estimation,passenger scheduling,traffic flow forecasting,high-speed railway smart platform.Finally,challenges associated with the application of AI are discussed,offering insights for future research directions.展开更多
The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calcula...The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calculated using the state-of-the-art space-time separation principle that separates the Emergency Braking(EB)trajectories of two successive units during the whole EB process.In this case,the minimal safety distance is usually numerically calculated without an analytic formulation.Thus,the constrained VCTS control problem is hard to address with space-time separation,which is still a gap in the existing literature.To solve this problem,we propose a Distributed Economic Model Predictive Control(DEMPC)approach with computation efficiency and theoretical guarantee.Specifically,to alleviate the computation burden,we transform implicit safety constraints into explicitly linear ones,such that the optimal control problem in DEMPC is a quadratic programming problem that can be solved efficiently.For theoretical analysis,sufficient conditions are derived to guarantee the recursive feasibility and stability of DEMPC,employing compatibility constraints,tube techniques and terminal ingredient tuning.Moreover,we extend our approach with globally optimal and distributed online EB configuration methods to shorten the minimal distance among VCTS.Finally,experimental results demonstrate the performance and advantages of the proposed approaches.展开更多
基金the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the Project Number 223202.
文摘Recognizing human activity(HAR)from data in a smartphone sensor plays an important role in the field of health to prevent chronic diseases.Daily and weekly physical activities are recorded on the smartphone and tell the user whether he is moving well or not.Typically,smartphones and their associated sensing devices operate in distributed and unstable environments.Therefore,collecting their data and extracting useful information is a significant challenge.In this context,the aimof this paper is twofold:The first is to analyze human behavior based on the recognition of physical activities.Using the results of physical activity detection and classification,the second part aims to develop a health recommendation system to notify smartphone users about their healthy physical behavior related to their physical activities.This system is based on the calculation of calories burned by each user during physical activities.In this way,conclusions can be drawn about a person’s physical behavior by estimating the number of calories burned after evaluating data collected daily or even weekly following a series of physical workouts.To identify and classify human behavior our methodology is based on artificial intelligence models specifically deep learning techniques like Long Short-Term Memory(LSTM),stacked LSTM,and bidirectional LSTM.Since human activity data contains both spatial and temporal information,we proposed,in this paper,to use of an architecture allowing the extraction of the two types of information simultaneously.While Convolutional Neural Networks(CNN)has an architecture designed for spatial information,our idea is to combine CNN with LSTM to increase classification accuracy by taking into consideration the extraction of both spatial and temporal data.The results obtained achieved an accuracy of 96%.On the other side,the data learned by these algorithms is prone to error and uncertainty.To overcome this constraint and improve performance(96%),we proposed to use the fusion mechanisms.The last combines deep learning classifiers tomodel non-accurate and ambiguous data to obtain synthetic information to aid in decision-making.The Voting and Dempster-Shafer(DS)approaches are employed.The results showed that fused classifiers based on DS theory outperformed individual classifiers(96%)with the highest accuracy level of 98%.Also,the findings disclosed that participants engaging in physical activities are healthy,showcasing a disparity in the distribution of physical activities between men and women.
基金funding support from Rijkswaterstaat,the Netherlands,and European Union’s Horizon 2020 Research and Innovation Programme(Project SAFE-10-T under Grant No.723254)China Scholarship Council,and National Natural Science Foundation of China(Grant No.42225702).
文摘Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study presents a state-of-the-art review of the DFOS applications for monitoring and assessing the deformation behavior of typical tunnel infrastructure,including bored tunnels,conventional tunnels,as well as immersed and cut-and-cover tunnels.DFOS systems based on Brillouin and Rayleigh scattering principles are both considered.When implementing DFOS monitoring,the fiber optic cable can be primarily installed along transverse and longitudinal directions to(1)measure distributed strains by continuously adhering the fiber to the structure’s surface or embedding it in the lining,or(2)measure point displacements by spot-anchoring it on the lining surface.There are four critical aspects of DFOS monitoring,including proper selection of the sensing fiber,selection of the measuring principle for the specific application,design of an effective sensor layout,and establishment of robust field sensor instrumentation.These four issues are comprehensively discussed,and practical suggestions are provided for the implementation of DFOS in tunnel infrastructure monitoring.
文摘In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory tubes by means of routing decisions complying with traffic congestion criteria. To this end, a novel distributed control architecture is conceived by taking advantage of two methodologies: deep reinforcement learning and model predictive control. On one hand, the routing decisions are obtained by using a distributed reinforcement learning algorithm that exploits available traffic data at each road junction. On the other hand, a bank of model predictive controllers is in charge of computing the more adequate control action for each involved vehicle. Such tasks are here combined into a single framework:the deep reinforcement learning output(action) is translated into a set-point to be tracked by the model predictive controller;conversely, the current vehicle position, resulting from the application of the control move, is exploited by the deep reinforcement learning unit for improving its reliability. The main novelty of the proposed solution lies in its hybrid nature: on one hand it fully exploits deep reinforcement learning capabilities for decisionmaking purposes;on the other hand, time-varying hard constraints are always satisfied during the dynamical platoon evolution imposed by the computed routing decisions. To efficiently evaluate the performance of the proposed control architecture, a co-design procedure, involving the SUMO and MATLAB platforms, is implemented so that complex operating environments can be used, and the information coming from road maps(links,junctions, obstacles, semaphores, etc.) and vehicle state trajectories can be shared and exchanged. Finally by considering as operating scenario a real entire city block and a platoon of eleven vehicles described by double-integrator models, several simulations have been performed with the aim to put in light the main f eatures of the proposed approach. Moreover, it is important to underline that in different operating scenarios the proposed reinforcement learning scheme is capable of significantly reducing traffic congestion phenomena when compared with well-reputed competitors.
基金supported by the National Key R&D Program of China (2018AAA0101701)the National Natural Science Foundation of China (62073220,61833012)。
文摘In this paper,distributed model predictive control(DMPC) for island DC micro-grids(MG) with wind/photovoltaic(PV)/battery power is proposed,which coordinates all distributed generations(DG) to stabilize the bus voltage together with the insurance of having computational efficiency under a real-time requirement.Based on the feedback of the bus voltage,the deviation of the current is dispatched to each DG according to cost over the prediction horizon.Moreover,to avoid the excessive fluctuation of the battery power,both the discharge-charge switching times and costs are considered in the model predictive control(MPC) optimization problems.A Lyapunov constraint with a time-varying steady-state is designed in each local MPC to guarantee the stabilization of the entire system.The voltage stabilization of the MG is achieved by this strategy with the cooperation of DGs.The numeric results of applying the proposed method to a MG of the Shanghai Power Supply Company shows the effectiveness of the distributed economic MPC.
基金Project supported by the National Natural Science Foundation of China (Grant No.62073045)。
文摘We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that provide spatially averaged state measurements can be used to improve state estimation in the network.For the purpose of decreasing the update frequency of controller and unnecessary sampled data transmission, an efficient dynamic event-triggered control policy is constructed.In an event-triggered system, when an error signal exceeds a specified time-varying threshold, it indicates the occurrence of a typical event.The global asymptotic stability of the event-triggered closed-loop system and the boundedness of the minimum inter-event time can be guaranteed.Based on the linear quadratic optimal regulator, the actuator selects the optimal displacement only when an event occurs.A simulation example is finally used to verify that the effectiveness of such a control strategy can enhance the system performance.
基金supported by the National Key Research and Development Program of China(No.2018YFA0702800)the National Natural Science Foundation of China(No.12072056)supported by National Defense Fundamental Scientific Research Project(XXXX2018204BXXX).
文摘The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scattering have been extensively deployed in structural health monitoring due to their advantages,such as lightweight and ease of embedding.However,identifying the precise location of damage from the optical fiber signals remains a critical challenge.In this paper,a novel approach which namely Modified Sliding Window Principal Component Analysis(MSWPCA)was proposed to facilitate automatic damage identification and localization via distributed optical fiber sensors.The proposed method is able to extract signal characteristics interfered by measurement noise to improve the accuracy of damage detection.Specifically,we applied the MSWPCA method to monitor and analyze the debonding propagation process in honeycomb sandwich panel structures.Our findings demonstrate that the training model exhibits high precision in detecting the location and size of honeycomb debonding,thereby facilitating reliable and efficient online assessment of the structural health state.
基金support from the National Science and Technology Council of Taiwan(Contract Nos.111-2221 E-011081 and 111-2622-E-011019)the support from Intelligent Manufacturing Innovation Center(IMIC),National Taiwan University of Science and Technology(NTUST),Taipei,Taiwan,which is a Featured Areas Research Center in Higher Education Sprout Project of Ministry of Education(MOE),Taiwan(since 2023)was appreciatedWe also thank Wang Jhan Yang Charitable Trust Fund(Contract No.WJY 2020-HR-01)for its financial support.
文摘This study proposed a new real-time manufacturing process monitoring method to monitor and detect process shifts in manufacturing operations.Since real-time production process monitoring is critical in today’s smart manufacturing.The more robust the monitoring model,the more reliable a process is to be under control.In the past,many researchers have developed real-time monitoring methods to detect process shifts early.However,thesemethods have limitations in detecting process shifts as quickly as possible and handling various data volumes and varieties.In this paper,a robust monitoring model combining Gated Recurrent Unit(GRU)and Random Forest(RF)with Real-Time Contrast(RTC)called GRU-RF-RTC was proposed to detect process shifts rapidly.The effectiveness of the proposed GRU-RF-RTC model is first evaluated using multivariate normal and nonnormal distribution datasets.Then,to prove the applicability of the proposed model in a realmanufacturing setting,the model was evaluated using real-world normal and non-normal problems.The results demonstrate that the proposed GRU-RF-RTC outperforms other methods in detecting process shifts quickly with the lowest average out-of-control run length(ARL1)in all synthesis and real-world problems under normal and non-normal cases.The experiment results on real-world problems highlight the significance of the proposed GRU-RF-RTC model in modern manufacturing process monitoring applications.The result reveals that the proposed method improves the shift detection capability by 42.14%in normal and 43.64%in gamma distribution problems.
文摘Lithium ion batteries are complicated distributed parameter systems that can be described preferably by partial differential equations and a field theory. To reduce the solution difficulty and the calculation amount, if a distributed parameter system is described by ordinary differential equations (ODE) during the analysis and the design of distributed parameter system, the reliability of the system description will be reduced, and the systemic errors will be introduced. Studies on working condition real-time monitoring can improve the security because the rechargeable LIBs are widely used in many electronic systems and electromechanical equipment. Single particle model (SPM) is the simplification of LIB under some approximations, and can estimate the working parameters of a LIB at the faster simulation speed. A LIB modelling algorithm based on PDEs and SPM is proposed to monitor the working condition of LIBs in real time. Although the lithium ion concentration is an unmeasurable distributed parameter in the anode of LIB, the working condition monitoring model can track the real time lithium ion concentration in the anode of LIB, and calculate the residual which is the difference between the ideal data and the measured data. A fault alarm can be triggered when the residual is beyond the preset threshold. A simulation example verifies that the effectiveness and the accuracy of the working condition real-time monitoring model of LIB based on PDEs and SPM.
文摘This paper describes a hierarchical architecture and a high-performance and interoperability protocol for centralized monitoring and controlling systems (CMCS) . The protocol we proposed can interoperate different monitoring and controlling systems constructed by different companies, each with different functions and communication protocols. The protocol reduces the amount of traffic and has real-time and high-perfor-mance advantages. The protocol was implemented in CMCS for telecommunication power supply and air-condi-tioner used by the Telecommunication Bureau of Zhejiang Province. This paper deals with the hierarchical architecture and function of CMCS and packet format, command ID, and SDL description of its protocol. We also discuss the properties of the interoperability and performance of the protocol in this paper.
文摘The relationships and the features of integration between Enterprise ProcessMonitoring and Controlling System (EPMCS) and Enterprise Process Related Applications (EPRA) wereanalyzed. An integration architecture centered on EPMCS was presented, in which there were fourlayers to connect from EPMCS to EPRA: EPMCS, application integration layer, transport layer andEPRA, and there were four layers used to etstablish integration: presentation layer, function layer,data layer and system layer. The frameworks to connect EPMCS and EPRA were designed, thatEnterprise-Independent Model (EIM), Enterprise-Specific Model (ESM) and meta-model to describe thesetwo models were defined. The method to integrate data based on XML was designed to exchange datafrom EPMCS to EPRA according to the mapping between EIM and ESM. The approches are suitable forintegrating EPMCS and systems in Product Data Management (PDM), project management and enterprisebusiness management.
基金Supported by the National Natural Science Foundation of China(91016017)the National Aviation Found of China(20115868009)~~
文摘The cooperative control and stability analysis problems for the multi-agent system with sampled com- munication are investigated. Distributed state feedback controllers are adopted for the cooperation of networked agents. A theorem in the form of linear matrix inequalities(LMI) is derived to analyze the system stability. An- other theorem in the form of optimization problem subject to LMI constraints is proposed to design the controller, and then the algorithm is presented. The simulation results verify the validity and the effectiveness of the pro- posed approach.
基金supported in part by the National Key Research and Development Program of China(2021YFB1714800)the National Natural Science Foundation of China(62088101,61925303,62173034,U20B2073)+1 种基金the Natural Science Foundation of Chongqing(2021ZX4100027)the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)under Germanys Excellence Strategy—EXC 2075-390740016(468094890)。
文摘The present paper deals with data-driven event-triggered control of a class of unknown discrete-time interconnected systems(a.k.a.network systems).To this end,we start by putting forth a novel distributed event-triggering transmission strategy based on periodic sampling,under which a model-based stability criterion for the closed-loop network system is derived,by leveraging a discrete-time looped-functional approach.Marrying the model-based criterion with a data-driven system representation recently developed in the literature,a purely data-driven stability criterion expressed in the form of linear matrix inequalities(LMIs)is established.Meanwhile,the data-driven stability criterion suggests a means for co-designing the event-triggering coefficient matrix and the feedback control gain matrix using only some offline collected state-input data.Finally,numerical results corroborate the efficacy of the proposed distributed data-driven event-triggered network system(ETS)in cutting off data transmissions and the co-design procedure.
基金supported by the National Natural Science Foundation of China(62103203)the General Terminal IC Interdisciplinary Science Center of Nankai University.
文摘Battery energy storage systems(BESSs)are widely used in smart grids.However,power consumed by inner impedance and the capacity degradation of each battery unit become particularly severe,which has resulted in an increase in operating costs.The general economic dispatch(ED)algorithm based on marginal cost(MC)consensus is usually a proportional(P)controller,which encounters the defects of slow convergence speed and low control accuracy.In order to solve the distributed ED problem of the isolated BESS network with excellent dynamic and steady-state performance,we attempt to design a proportional integral(PI)controller with a reset mechanism(PI+R)to asymptotically promote MC consensus and total power mismatch towards 0 in this paper.To be frank,the integral term in the PI controller is reset to 0 at an appropriate time when the proportional term undergoes a zero crossing,which accelerates convergence,improves control accuracy,and avoids overshoot.The eigenvalues of the system under a PI+R controller is well analyzed,ensuring the regularity of the system and enabling the reset mechanism.To ensure supply and demand balance within the isolated BESSs,a centralized reset mechanism is introduced,so that the controller is distributed in a flow set and centralized in a jump set.To cope with Zeno behavior and input delay,a dwell time that the system resides in a flow set is given.Based on this,the system with input delays can be reduced to a time-delay free system.Considering the capacity limitation of the battery,a modified MC scheme with PI+R controller is designed.The correctness of the designed scheme is verified through relevant simulations.
基金The authors are grateful for the financial support from the National Natural Science Foundation of China(Grant Nos.42177143,42277461)the Science Foundation for Distinguished Young Scholars of Sichuan Province(Grant No.2020JDJQ0011).Thanks to the Chn Energy Dadu River Hydropower Development Co.,Ltd,China Three Gorges Construction Engineering Corporation,Yalong River Hydropower Development Company,Ltd,Power China Chengdu Engineering Co.,Ltd,Power China Northwest Engineering Co.,Ltd,Power China Sinohydro Bureau 7 Co.,Ltd,China Gezhouba Group No.1 Engineering Co.,Ltd.,and the 5th Engineering Co.,Ltd.of China Railway Construction Bridge Engineering Bureau Group for the support and assistance.
文摘The underground hydropower projects in Southwest China is characterized by large excavation sizes,high geostresses,complicated geological conditions and multiple construction processes.Various disasters such as collapses,large deformations,rockbursts are frequently encountered,resulting in serious casualties and huge economic losses.This review mainly presents some representative results on microseismic(MS)monitoring and forecasting for disasters in hydropower underground engineering.First,a set of new denoising,spectral analysis,and location methods were developed for better identification and location of MS signals.Then,the tempo-spatial characteristics of MS events were analyzed to understand the relationship between field construction and damages of surrounding rocks.Combined with field construction,geological data,numerical simulation and parametric analysis of MS sources,the focal mechanism of MS events was revealed.A damage constitutive model considering MS fracturing size was put forward and feedback analysis considering the MS damage of underground surrounding rocks was conducted.Next,an MS multi-parameter based risk assessment and early warning method for dynamic disasters were proposed.The technology for control of the damage and deformation of underground surrounding rocks was proposed for underground caverns.Finally,two typical underground powerhouses were selected as case studies.These achievements can provide significant references for prevention and control of dynamic disasters for underground engineering with similar complicated geological conditions.
基金supported in part by the National Natural Science Foundation of China(62173255, 62188101)Shenzhen Key Laboratory of Control Theory and Intelligent Systems,(ZDSYS20220330161800001)。
文摘DC-DC converter-based multi-bus DC microgrids(MGs) in series have received much attention, where the conflict between voltage recovery and current balancing has been a hot topic. The lack of models that accurately portray the electrical characteristics of actual MGs while is controller design-friendly has kept the issue active. To this end, this paper establishes a large-signal model containing the comprehensive dynamical behavior of the DC MGs based on the theory of high-order fully actuated systems, and proposes distributed optimal control based on this. The proposed secondary control method can achieve the two goals of voltage recovery and current sharing for multi-bus DC MGs. Additionally, the simple structure of the proposed approach is similar to one based on droop control, which allows this control technique to be easily implemented in a variety of modern microgrids with different configurations. In contrast to existing studies, the process of controller design in this paper is closely tied to the actual dynamics of the MGs. It is a prominent feature that enables engineers to customize the performance metrics of the system. In addition, the analysis of the stability of the closed-loop DC microgrid system, as well as the optimality and consensus of current sharing are given. Finally, a scaled-down solar and battery-based microgrid prototype with maximum power point tracking controller is developed in the laboratory to experimentally test the efficacy of the proposed control method.
基金Project(52204084)supported by the National Natural Science Foundation of ChinaProject(FRF-IDRY-GD22-002)supported by the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities),China+2 种基金Project(QNXM20220009)supported by the Fundamental Research Funds for the Central Universities and the Youth Teacher International Exchange and Growth Program,ChinaProjects(2022YFC2905600,2022YFC3004601)supported by the National Key R&D Program of ChinaProject(2023XAGG0061)supported by the Science,Technology&Innovation Project of Xiongan New Area,China。
文摘Metal mineral resources play an indispensable role in the development of the national economy.Dynamic disasters in underground metal mines seriously threaten mining safety,which are major scientific and technological problems to be solved urgently.In this article,the occurrence status and grand challenges of some typical dynamic disasters involving roof falling,spalling,collapse,large deformation,rockburst,surface subsidence,and water inrush in metal mines in China are systematically presented,the characteristics of mining-induced dynamic disasters are analyzed,the examples of dynamic disasters occurring in some metal mines in China are summarized,the occurrence mechanism,monitoring and early warning methods,and prevention and control techniques of these disasters are highlighted,and some new opinions,suggestions,and solutions are proposed simultaneously.Moreover,some shortcomings in current disaster research are pointed out,and the direction of efforts to improve the prevention and control level of dynamic disasters in China’s metal mines in the future is prospected.The integration of forward-looking key innovative theories and technologies in the abovementioned aspects will greatly enhance the cognitive level of disaster prevention and mitigation in China’s metal mining industry and achieve a significant shift from passive disaster relief to active disaster prevention.
基金supported by the Beijing Natural Science Foundation(4212008)the National Natural Science Foundation of China(62272031)+2 种基金the Open Foundation of Information Security Evaluation Center of Civil Aviation,Civil Aviation University of China(ISECCA-202101)Guangxi Key Laboratory of Cryptography and Information Security(GCIS201915)supported in part by the National Natural Science Foundation of China(U21A20463,U22B2027)。
文摘The blockchain cross-chain is a significant technology for inter-chain interconnection and value transfer among different blockchain networks.Cross-chain overcomes the“information island”problem of the closed blockchain network and is increasingly applied to multiple critical areas such as finance and the internet of things(IoT).Blockchain can be divided into three main categories of blockchain networks:public blockchains,private blockchains,and consortium blockchains.However,there are differences in block structures,consensus mechanisms,and complex working mechanisms among heterogeneous blockchains.The fragility of the cross-chain system itself makes the cross-chain system face some potential security and privacy threats.This paper discusses security defects on the cross-chain implementation mechanism,and discusses the impact of the structural features of blockchain networks on cross-chain security.In terms of cross-chain intercommunication,a cross-chain attack can be divided into a multi-chain combination attack,native chain attack,and inter-chain attack diffusion.Then various security threats and attack paths faced by the cross-chain system are analyzed.At last,the corresponding security defense methods of cross-chain security threats and future research directions for cross-chain applications are put forward.
文摘In this editorial,we comment on the article by Zhang et al.Chronic kidney disease(CKD)presents a significant challenge in managing glycemic control,especially in diabetic patients with diabetic kidney disease undergoing dialysis or kidney transplantation.Conventional markers like glycated haemoglobin(HbA1c)may not accurately reflect glycemic fluctuations in these populations due to factors such as anaemia and kidney dysfunction.This comprehensive review discusses the limitations of HbA1c and explores alternative methods,such as continuous glucose monitoring(CGM)in CKD patients.CGM emerges as a promising technology offering real-time or retrospective glucose concentration measure-ments and overcoming the limitations of HbA1c.Key studies demonstrate the utility of CGM in different CKD settings,including hemodialysis and peritoneal dialysis patients,as well as kidney transplant recipients.Despite challenges like sensor accuracy fluctuation,CGM proves valuable in monitoring glycemic trends and mitigating the risk of hypo-and hyperglycemia,to which CKD patients are prone.The review also addresses the limitations of CGM in CKD patients,emphasizing the need for further research to optimize its utilization in clinical practice.Altogether,this review advocates for integrating CGM into managing glycemia in CKD patients,highlighting its superiority over traditional markers and urging clinicians to consider CGM a valuable tool in their armamentarium.
基金supported by the National Natural Science Foundation of China(62172033).
文摘In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,emergency communication,and real-time scheduling,demands advanced capabilities in real-time perception,automated driving,and digitized services,which accelerate the integration and application of Artificial Intelligence(AI)in the HSR system.This paper first provides a brief overview of AI,covering its origin,evolution,and breakthrough applications.A comprehensive review is then given regarding the most advanced AI technologies and applications in three macro application domains of the HSR system:mechanical manufacturing and electrical control,communication and signal control,and transportation management.The literature is categorized and compared across nine application directions labeled as intelligent manufacturing of trains and key components,forecast of railroad maintenance,optimization of energy consumption in railroads and trains,communication security,communication dependability,channel modeling and estimation,passenger scheduling,traffic flow forecasting,high-speed railway smart platform.Finally,challenges associated with the application of AI are discussed,offering insights for future research directions.
基金supported by the National Natural Science Foundation of China(52372310)the State Key Laboratory of Advanced Rail Autonomous Operation(RAO2023ZZ001)+1 种基金the Fundamental Research Funds for the Central Universities(2022JBQY001)Beijing Laboratory of Urban Rail Transit.
文摘The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calculated using the state-of-the-art space-time separation principle that separates the Emergency Braking(EB)trajectories of two successive units during the whole EB process.In this case,the minimal safety distance is usually numerically calculated without an analytic formulation.Thus,the constrained VCTS control problem is hard to address with space-time separation,which is still a gap in the existing literature.To solve this problem,we propose a Distributed Economic Model Predictive Control(DEMPC)approach with computation efficiency and theoretical guarantee.Specifically,to alleviate the computation burden,we transform implicit safety constraints into explicitly linear ones,such that the optimal control problem in DEMPC is a quadratic programming problem that can be solved efficiently.For theoretical analysis,sufficient conditions are derived to guarantee the recursive feasibility and stability of DEMPC,employing compatibility constraints,tube techniques and terminal ingredient tuning.Moreover,we extend our approach with globally optimal and distributed online EB configuration methods to shorten the minimal distance among VCTS.Finally,experimental results demonstrate the performance and advantages of the proposed approaches.