The Cauchy problem and initial traces for the doubly degenerate parabolic equationsare studied. Under certain growth condition on the initial datum u0(x) as the existence of solution is proved. The results obtained ar...The Cauchy problem and initial traces for the doubly degenerate parabolic equationsare studied. Under certain growth condition on the initial datum u0(x) as the existence of solution is proved. The results obtained are optimal in the dass of nonnegative locally bounded solution, for which a Harnack-type inequality holds.展开更多
This paper deals with blow-up criterion for a doubly degenerate parabolic equation of the form (u^n)t = (|ux|^m-1ux)x + u^p in (0, 1) × (0,T) subject to nonlinear boundary source (|ux|^m-1ux)(1,t...This paper deals with blow-up criterion for a doubly degenerate parabolic equation of the form (u^n)t = (|ux|^m-1ux)x + u^p in (0, 1) × (0,T) subject to nonlinear boundary source (|ux|^m-1ux)(1,t) = u^q(1,t), (|ux|^m-1ux)(0,t) = O, and positive initial data u(x,0) = uo(x), where the parameters va, n, p, q 〉0. It is proved that the problem possesses global solutions if and only if p ≤ n and q〈min {n,m(n+1)/m+1}.展开更多
This paper studies the conditions of blow up in finite time of solutions of initial boundary value problem for a class nonlinear doubly degenerate parabolic equation.
This paper deals with a class of doubly degenerate parabolic equations, including as particular cases the porous medium equation and the degenerate pLaplace equation (p 〉 2)ut-div(b(x,t,u)|↓△u|^p-2↓△u)=f...This paper deals with a class of doubly degenerate parabolic equations, including as particular cases the porous medium equation and the degenerate pLaplace equation (p 〉 2)ut-div(b(x,t,u)|↓△u|^p-2↓△u)=f(x,u,t)The initial-boundary value problem in a bounded domain of R^N is considered under mixed boundary conditions. The existence of local-in-time weak solutions is obtained.展开更多
Abstract In this paper, the blow-up rate is obtained for a porous medium equation with a nonlinear gradient term and a nonlinear boundary flux. By using a scaling method and regularity estimates of parabolic equations...Abstract In this paper, the blow-up rate is obtained for a porous medium equation with a nonlinear gradient term and a nonlinear boundary flux. By using a scaling method and regularity estimates of parabolic equations, the blow-up rate determined by the interaction between the diffusion and the boundary flux is obtained. Compared with previous results, the gradient term, whose exponent does not exceed two, does not affect the blow-up rate of the solutions.展开更多
In this paper, we prove the existence of solution of the Cauchy problem of a nonlinear degenerate parabolic equation. Moreover some regularizing effects are exhibited.
In this note, we investigated existence and uniqueness of entropy solution for triply nonlinear degenerate parabolic problem with zero-flux boundary condition. Accordingly to the case of doubly nonlinear degenerate pa...In this note, we investigated existence and uniqueness of entropy solution for triply nonlinear degenerate parabolic problem with zero-flux boundary condition. Accordingly to the case of doubly nonlinear degenerate parabolic hyperbolic equation, we propose a generalization of entropy formulation and prove existence and uniqueness result without any structure condition.展开更多
In this work we propose a numerical scheme for a nonlinear and degenerate parabolic problem having application in petroleum reservoir and groundwater aquifer simulation. The degeneracy of the equation includes both lo...In this work we propose a numerical scheme for a nonlinear and degenerate parabolic problem having application in petroleum reservoir and groundwater aquifer simulation. The degeneracy of the equation includes both locally fast and slow diffusion (i.e. the diffusion coefficients may explode or vanish in some point). The main difficulty is that the true solution is typically lacking in regularity. Our numerical approach includes a regularization step and a standard discretization procedure by means of C0-piecewise linear finite elements in space and backward-differences in time. Within this frame work, we analyze the accuracy of the scheme by using an integral test function and obtain several error estimates in suitable norms.展开更多
Under some conditions, one seows that the generalized solutions of the first boundary value problem for the equation [GRAPHICS] have the property of finite speed of propagation.
The purpose of this paper is to investigate the nonexistence of positive so lutions of the following doubly nonlinear degenerate parabolic equations:{∂u=▽k·(u^(m-1)|▽ku|^(p-2)▽ku)+(w)u^(m+p-2),u(w,0)=u0(w)≥0,...The purpose of this paper is to investigate the nonexistence of positive so lutions of the following doubly nonlinear degenerate parabolic equations:{∂u=▽k·(u^(m-1)|▽ku|^(p-2)▽ku)+(w)u^(m+p-2),u(w,0)=u0(w)≥0,u(w,t)=0,inΩ×(0,T),inΩ,on∂Ω×(0,T),where Q is a Carnot-Carathéodory metric bal in IR^(2n+1)generated by Greiner vector fields,V∈L_(loc)(Ω),k∈N,m∈R,1<p<2n+2k and m+p-2>0.The better lower bound p*for m+p is found and the nonexistence results are proved for p*≤m+p<3.展开更多
In this paper, we give a complete picture of the blow-up criteria for weak solutions of the Dirichlet problem of some doubly degenerate nonlinear parabolic equations.
This paper is devoted to the homogenization of a nonlinear degenerate parabolic problemwith Dirichlet boundary condition. Here the operator D(y, s, △s) is periodic in y and degenerated in △s. In the paper, under t...This paper is devoted to the homogenization of a nonlinear degenerate parabolic problemwith Dirichlet boundary condition. Here the operator D(y, s, △s) is periodic in y and degenerated in △s. In the paper, under the two-scale convergence theory, we obtain the limit equation as ∈ → 0 and also prove the corrector results of △u^∈ to strong convergence.展开更多
This paper is mainly focused on the global existence and extinction behaviour of the solutions to a doubly nonlinear parabolic equation with logarithmic nonlinearity. By making use of energy estimates method and a ser...This paper is mainly focused on the global existence and extinction behaviour of the solutions to a doubly nonlinear parabolic equation with logarithmic nonlinearity. By making use of energy estimates method and a series of ordinary differential inequalities, the global existence of the solution is obtained. Moreover, we give the sufficient conditions on the occurrence(or absence)of the extinction behaviour.展开更多
This paper deals with the following doubly nonlinear parabolic equations(u + |u|r(x)-2u)t-div(|?u|m(x)-2?u) = |u|p(x)-2u, where the exponents of nonlinearity r(x), m(x) and p(x) are given functions. Under some appropr...This paper deals with the following doubly nonlinear parabolic equations(u + |u|r(x)-2u)t-div(|?u|m(x)-2?u) = |u|p(x)-2u, where the exponents of nonlinearity r(x), m(x) and p(x) are given functions. Under some appropriate assumptions on the exponents of nonlinearity, and with certain initial data, a blow-up result is established with positive initial energy.展开更多
In this papaer, existence results for degenerate parabolic boundary valueproblems of second order are proved. The weak solution is sought in a suitable weightedSobolev space by using the generalized degree theory.
In this paper, we study the nonexistence and longtime behavior of weak solution for the degenerate parabolic equation σtun=umdiv(|▽um|p-2▽um)+γ|▽um|p+βun with zero boundary condition. Blow-up time is der...In this paper, we study the nonexistence and longtime behavior of weak solution for the degenerate parabolic equation σtun=umdiv(|▽um|p-2▽um)+γ|▽um|p+βun with zero boundary condition. Blow-up time is derived when the blow-up does occur.展开更多
In this paper, we are concerned with the following three types of nonlinear degenerate parabolic equations with time-dependent singular potentials: uq/ t=▽α·(‖z‖^-pγ|▽αu|^p-2▽αu)+V(z, t)u^p-1, uq...In this paper, we are concerned with the following three types of nonlinear degenerate parabolic equations with time-dependent singular potentials: uq/ t=▽α·(‖z‖^-pγ|▽αu|^p-2▽αu)+V(z, t)u^p-1, uq/ t=▽α·(‖z‖^-2γ▽αu^m)+V(z, t)u^m, uq/ t=u^μ▽α·(u^τ|▽αu|^p-2▽αu)+V(z, t)u^p-1+μ+τin a cylinder Ω×(0, T) with initial condition u(z, 0)=u0(z) ≥ 0 and vanishing on the boundary Ω×(0, T), where Ω is a Carnot-Carathéodory metric ball in Rd+k and the time-dependent singular potential function is V(z, t) ∈ L^1loc (Ω×(0, T)). We investigate the nonexistence of positive solutions of these three problems and present our results on nonexistence.展开更多
In this paper, we obtain the necessary and sufficient conditions on the global existence of all positive (weak) solutions to a nonlinear degenerate parabolic equation with nonlinear boundary condition.
文摘The Cauchy problem and initial traces for the doubly degenerate parabolic equationsare studied. Under certain growth condition on the initial datum u0(x) as the existence of solution is proved. The results obtained are optimal in the dass of nonnegative locally bounded solution, for which a Harnack-type inequality holds.
文摘This paper deals with blow-up criterion for a doubly degenerate parabolic equation of the form (u^n)t = (|ux|^m-1ux)x + u^p in (0, 1) × (0,T) subject to nonlinear boundary source (|ux|^m-1ux)(1,t) = u^q(1,t), (|ux|^m-1ux)(0,t) = O, and positive initial data u(x,0) = uo(x), where the parameters va, n, p, q 〉0. It is proved that the problem possesses global solutions if and only if p ≤ n and q〈min {n,m(n+1)/m+1}.
文摘This paper studies the conditions of blow up in finite time of solutions of initial boundary value problem for a class nonlinear doubly degenerate parabolic equation.
基金The NSFC(10371050)and the"985"program of Jilin University.
文摘This paper deals with a class of doubly degenerate parabolic equations, including as particular cases the porous medium equation and the degenerate pLaplace equation (p 〉 2)ut-div(b(x,t,u)|↓△u|^p-2↓△u)=f(x,u,t)The initial-boundary value problem in a bounded domain of R^N is considered under mixed boundary conditions. The existence of local-in-time weak solutions is obtained.
基金Project supported by the Youth Foundation of the National Natural Science Foundation of China(No. 10701061)
文摘Abstract In this paper, the blow-up rate is obtained for a porous medium equation with a nonlinear gradient term and a nonlinear boundary flux. By using a scaling method and regularity estimates of parabolic equations, the blow-up rate determined by the interaction between the diffusion and the boundary flux is obtained. Compared with previous results, the gradient term, whose exponent does not exceed two, does not affect the blow-up rate of the solutions.
文摘In this paper, we prove the existence of solution of the Cauchy problem of a nonlinear degenerate parabolic equation. Moreover some regularizing effects are exhibited.
文摘In this note, we investigated existence and uniqueness of entropy solution for triply nonlinear degenerate parabolic problem with zero-flux boundary condition. Accordingly to the case of doubly nonlinear degenerate parabolic hyperbolic equation, we propose a generalization of entropy formulation and prove existence and uniqueness result without any structure condition.
文摘In this work we propose a numerical scheme for a nonlinear and degenerate parabolic problem having application in petroleum reservoir and groundwater aquifer simulation. The degeneracy of the equation includes both locally fast and slow diffusion (i.e. the diffusion coefficients may explode or vanish in some point). The main difficulty is that the true solution is typically lacking in regularity. Our numerical approach includes a regularization step and a standard discretization procedure by means of C0-piecewise linear finite elements in space and backward-differences in time. Within this frame work, we analyze the accuracy of the scheme by using an integral test function and obtain several error estimates in suitable norms.
文摘Under some conditions, one seows that the generalized solutions of the first boundary value problem for the equation [GRAPHICS] have the property of finite speed of propagation.
基金support from Nature Science Fund of China(No.11771354).
文摘The purpose of this paper is to investigate the nonexistence of positive so lutions of the following doubly nonlinear degenerate parabolic equations:{∂u=▽k·(u^(m-1)|▽ku|^(p-2)▽ku)+(w)u^(m+p-2),u(w,0)=u0(w)≥0,u(w,t)=0,inΩ×(0,T),inΩ,on∂Ω×(0,T),where Q is a Carnot-Carathéodory metric bal in IR^(2n+1)generated by Greiner vector fields,V∈L_(loc)(Ω),k∈N,m∈R,1<p<2n+2k and m+p-2>0.The better lower bound p*for m+p is found and the nonexistence results are proved for p*≤m+p<3.
基金the Natural Science Foundation of Fujian Province of China (No.Z0511048)
文摘In this paper, we give a complete picture of the blow-up criteria for weak solutions of the Dirichlet problem of some doubly degenerate nonlinear parabolic equations.
基金supported by National Natural Science Foundation of China (Grant No. 10871190)the Qing-Lan Project of Jiangsu Province
文摘This paper is devoted to the homogenization of a nonlinear degenerate parabolic problemwith Dirichlet boundary condition. Here the operator D(y, s, △s) is periodic in y and degenerated in △s. In the paper, under the two-scale convergence theory, we obtain the limit equation as ∈ → 0 and also prove the corrector results of △u^∈ to strong convergence.
基金Supported by the Project of Education Department of Hunan Province (20A174)。
文摘This paper is mainly focused on the global existence and extinction behaviour of the solutions to a doubly nonlinear parabolic equation with logarithmic nonlinearity. By making use of energy estimates method and a series of ordinary differential inequalities, the global existence of the solution is obtained. Moreover, we give the sufficient conditions on the occurrence(or absence)of the extinction behaviour.
基金supported by the National Natural Science Foundation of China(No.11801145)
文摘This paper deals with the following doubly nonlinear parabolic equations(u + |u|r(x)-2u)t-div(|?u|m(x)-2?u) = |u|p(x)-2u, where the exponents of nonlinearity r(x), m(x) and p(x) are given functions. Under some appropriate assumptions on the exponents of nonlinearity, and with certain initial data, a blow-up result is established with positive initial energy.
文摘In this papaer, existence results for degenerate parabolic boundary valueproblems of second order are proved. The weak solution is sought in a suitable weightedSobolev space by using the generalized degree theory.
基金Supported by the National Nature Science Foundation of China(Grant No.7117116411426176)Foundation of Guizhou Science and Technology Department(Grant No.[2015]2076)
文摘In this paper, we study the nonexistence and longtime behavior of weak solution for the degenerate parabolic equation σtun=umdiv(|▽um|p-2▽um)+γ|▽um|p+βun with zero boundary condition. Blow-up time is derived when the blow-up does occur.
基金Supported by Nature Science Fund of Shaanxi Province(Grant No.2012JM1014)
文摘In this paper, we are concerned with the following three types of nonlinear degenerate parabolic equations with time-dependent singular potentials: uq/ t=▽α·(‖z‖^-pγ|▽αu|^p-2▽αu)+V(z, t)u^p-1, uq/ t=▽α·(‖z‖^-2γ▽αu^m)+V(z, t)u^m, uq/ t=u^μ▽α·(u^τ|▽αu|^p-2▽αu)+V(z, t)u^p-1+μ+τin a cylinder Ω×(0, T) with initial condition u(z, 0)=u0(z) ≥ 0 and vanishing on the boundary Ω×(0, T), where Ω is a Carnot-Carathéodory metric ball in Rd+k and the time-dependent singular potential function is V(z, t) ∈ L^1loc (Ω×(0, T)). We investigate the nonexistence of positive solutions of these three problems and present our results on nonexistence.
基金supported by the NSFC(Grant No.10471009)BSFC(Grant No.1052001)
文摘In this paper, we obtain the necessary and sufficient conditions on the global existence of all positive (weak) solutions to a nonlinear degenerate parabolic equation with nonlinear boundary condition.