为准确掌握广东省森林干扰与森林恢复的动态特征,文章基于谷歌地球引擎(Google Earth Engine,GEE)云平台构建Landsat长时序年度无云地表反射率影像集,采用LandTrendr(Landsat-based detection of Trends in Distur-bance and Recovery)...为准确掌握广东省森林干扰与森林恢复的动态特征,文章基于谷歌地球引擎(Google Earth Engine,GEE)云平台构建Landsat长时序年度无云地表反射率影像集,采用LandTrendr(Landsat-based detection of Trends in Distur-bance and Recovery)算法提取广东省1990—2020年森林干扰与森林恢复的时空分布特征,并分析其演变的驱动因素,比较不同森林类型的干扰与恢复特征。结果表明:(1)1990—2020年,广东省的森林干扰总面积约为1.35×10^(4)km^(2),集中分布在广东省西部、东部和中部小范围地区,干扰面积最大的3个城市分别为韶关、梅州、清远市;森林恢复总面积约为1.91×10^(4)km^(2),集中分布在广东省北部和西部地区,恢复面积最大的3个城市分别为韶关、清远、肇庆市。(2)广东省森林干扰与森林恢复均集中发生在海拔小于等于600 m的地区,高海拔地区的森林面积较为稳定;广东省森林干扰集中发生在坡度小于等于25°的地区,森林恢复集中发生在坡度小于等于35°的地区。(3)广东省森林干扰在1996年后发生较为频繁,其中2011年的森林干扰面积最大;森林恢复主要集中在2001—2016年,其中2012年的森林恢复面积最大。(4)广东省的森林干扰与森林恢复主要受雨雪冰冻灾害、台风、病虫害等自然因素以及森林火灾、城市化、采伐、林业政策等人为因素的综合影响,其中雨雪冰冻灾害对广东省北部地区的常绿针叶林的影响较大,但该类型的森林恢复也较快。展开更多
针对地质灾害易发性评价因子分级数不确定的问题,引入自适应膨胀因子模糊覆盖分级方法(fuzzy cover approach for clustering based on adaptive inflation factor,AIFFC)对易发性评价因子分级进行优化。以湖南省湘乡市为研究区,提取了...针对地质灾害易发性评价因子分级数不确定的问题,引入自适应膨胀因子模糊覆盖分级方法(fuzzy cover approach for clustering based on adaptive inflation factor,AIFFC)对易发性评价因子分级进行优化。以湖南省湘乡市为研究区,提取了坡度、坡向、高程、年平均降雨量、归一化植被指数、道路、断层、岩性和土地利用9类评价因子,运用AIFFC及自然断点法(natural breakpoint classification,NBC)对连续型因子进行分级,并分别代入加权信息量模型和随机森林模型,获取研究区易发性区划图。采用单因子分级结果精度、灾积比分析和易发性分区结果对AIFFC分级法的优越性进行检验,结果表明:各因子采用AIFFC算法分级的AUC值均高于自然断点法;基于AIFFC的随机森林模型及加权信息量模型的高易发区灾积比分别提升了56.3%、74.6%,低易发区灾积比分别降低了48%、58.1%,AUC值分别提升了7.6%、2.7%。采用AIFFC分级方法优化了地质灾害易发性评价因子分级,显著提高了地质灾害易发性评价的合理性。展开更多
针对卡方自动交互诊断(CHAID)决策树易过拟合的问题,提出CHAID随机森林方法(CHAID Random Forest,CHAID-RF)。该方法采用随机采样、随机选择特征以及集成的策略,将CHAID决策树作为基分类器,形成CHAID-RF。为了验证CHAID-RF的有效性,选取...针对卡方自动交互诊断(CHAID)决策树易过拟合的问题,提出CHAID随机森林方法(CHAID Random Forest,CHAID-RF)。该方法采用随机采样、随机选择特征以及集成的策略,将CHAID决策树作为基分类器,形成CHAID-RF。为了验证CHAID-RF的有效性,选取CART、CHAID、SVM、RF作为对比算法,以准确率、加权查准率、加权查全率、加权F值作为分类模型评价指标,以均方根误差作为回归模型评价指标,采用10个分类数据集和7个回归数据集进行验证。实验结果表明CHAID-RF可行有效。展开更多
基于Global Fire Atlas遥感数据,借助ArcGIS 10.2和Origin等软件,分析了2003—2016年内蒙古地区野火特点,结合时间、空间的因素,探讨野火的时空动态规律。结果表明:2003—2016年内蒙古野火发生不是完全随机分布的,而是呈现一定的时空分...基于Global Fire Atlas遥感数据,借助ArcGIS 10.2和Origin等软件,分析了2003—2016年内蒙古地区野火特点,结合时间、空间的因素,探讨野火的时空动态规律。结果表明:2003—2016年内蒙古野火发生不是完全随机分布的,而是呈现一定的时空分布规律。该特征规律有助于强化区域火管理,增强重点防火区域的防火建设与宣传,科学安排防火工作,降低林火发生率,实现森林可持续发展。并对存在的不足与问题提出相关建议。展开更多
文摘为准确掌握广东省森林干扰与森林恢复的动态特征,文章基于谷歌地球引擎(Google Earth Engine,GEE)云平台构建Landsat长时序年度无云地表反射率影像集,采用LandTrendr(Landsat-based detection of Trends in Distur-bance and Recovery)算法提取广东省1990—2020年森林干扰与森林恢复的时空分布特征,并分析其演变的驱动因素,比较不同森林类型的干扰与恢复特征。结果表明:(1)1990—2020年,广东省的森林干扰总面积约为1.35×10^(4)km^(2),集中分布在广东省西部、东部和中部小范围地区,干扰面积最大的3个城市分别为韶关、梅州、清远市;森林恢复总面积约为1.91×10^(4)km^(2),集中分布在广东省北部和西部地区,恢复面积最大的3个城市分别为韶关、清远、肇庆市。(2)广东省森林干扰与森林恢复均集中发生在海拔小于等于600 m的地区,高海拔地区的森林面积较为稳定;广东省森林干扰集中发生在坡度小于等于25°的地区,森林恢复集中发生在坡度小于等于35°的地区。(3)广东省森林干扰在1996年后发生较为频繁,其中2011年的森林干扰面积最大;森林恢复主要集中在2001—2016年,其中2012年的森林恢复面积最大。(4)广东省的森林干扰与森林恢复主要受雨雪冰冻灾害、台风、病虫害等自然因素以及森林火灾、城市化、采伐、林业政策等人为因素的综合影响,其中雨雪冰冻灾害对广东省北部地区的常绿针叶林的影响较大,但该类型的森林恢复也较快。
文摘针对地质灾害易发性评价因子分级数不确定的问题,引入自适应膨胀因子模糊覆盖分级方法(fuzzy cover approach for clustering based on adaptive inflation factor,AIFFC)对易发性评价因子分级进行优化。以湖南省湘乡市为研究区,提取了坡度、坡向、高程、年平均降雨量、归一化植被指数、道路、断层、岩性和土地利用9类评价因子,运用AIFFC及自然断点法(natural breakpoint classification,NBC)对连续型因子进行分级,并分别代入加权信息量模型和随机森林模型,获取研究区易发性区划图。采用单因子分级结果精度、灾积比分析和易发性分区结果对AIFFC分级法的优越性进行检验,结果表明:各因子采用AIFFC算法分级的AUC值均高于自然断点法;基于AIFFC的随机森林模型及加权信息量模型的高易发区灾积比分别提升了56.3%、74.6%,低易发区灾积比分别降低了48%、58.1%,AUC值分别提升了7.6%、2.7%。采用AIFFC分级方法优化了地质灾害易发性评价因子分级,显著提高了地质灾害易发性评价的合理性。
文摘针对卡方自动交互诊断(CHAID)决策树易过拟合的问题,提出CHAID随机森林方法(CHAID Random Forest,CHAID-RF)。该方法采用随机采样、随机选择特征以及集成的策略,将CHAID决策树作为基分类器,形成CHAID-RF。为了验证CHAID-RF的有效性,选取CART、CHAID、SVM、RF作为对比算法,以准确率、加权查准率、加权查全率、加权F值作为分类模型评价指标,以均方根误差作为回归模型评价指标,采用10个分类数据集和7个回归数据集进行验证。实验结果表明CHAID-RF可行有效。
文摘基于Global Fire Atlas遥感数据,借助ArcGIS 10.2和Origin等软件,分析了2003—2016年内蒙古地区野火特点,结合时间、空间的因素,探讨野火的时空动态规律。结果表明:2003—2016年内蒙古野火发生不是完全随机分布的,而是呈现一定的时空分布规律。该特征规律有助于强化区域火管理,增强重点防火区域的防火建设与宣传,科学安排防火工作,降低林火发生率,实现森林可持续发展。并对存在的不足与问题提出相关建议。