Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existi...Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existing work just adapted to autonomous cases,and the obtained results were mainly on exponential stabilization.In comparison with autonomous cases,non-autonomous systems are of great interest and represent an important challenge.Accordingly,discrete feedback control has here been adjusted with a time factor to stabilize an unstable non-autonomous HNSDDS,in which new Lyapunov-Krasovskii functionals and some novel technologies are adopted.It should be noted,in particular,that the stabilization can be achieved not only in the routine H_∞ and exponential forms,but also the polynomial form and even a general form.展开更多
In this paper we study the degenerate differential system with delay:E(t)=Ax(t)+Bx(t-1)+f(t),give the canonical form of this systems and study this form of degeneration system with delay,have some results for the so...In this paper we study the degenerate differential system with delay:E(t)=Ax(t)+Bx(t-1)+f(t),give the canonical form of this systems and study this form of degeneration system with delay,have some results for the solvability of such systems and the uniqueness of their solutions.展开更多
Let f be an entire solution of the Tumura-Clunie type non-linear delay differential equation.We mainly investigate the dynamical properties of Julia sets of f,and the lower bound estimates of the measure of related li...Let f be an entire solution of the Tumura-Clunie type non-linear delay differential equation.We mainly investigate the dynamical properties of Julia sets of f,and the lower bound estimates of the measure of related limiting directions is verified.展开更多
We study nonhomogeneous systems of linear conformable fractional differential equations with pure delay.By using new conformable delayed matrix functions and the method of variation,we obtain a representation of their...We study nonhomogeneous systems of linear conformable fractional differential equations with pure delay.By using new conformable delayed matrix functions and the method of variation,we obtain a representation of their solutions.As an application,we derive a finite time stability result using the representation of solutions and a norm estimation of the conformable delayedmatrix functions.The obtained results are new,and they extend and improve some existing ones.Finally,an example is presented to illustrate the validity of our theoretical results.展开更多
In this paper, we study the existence of the transcendental meromorphic solution of the delay differential equations , where a(z) is a rational function, and are polynomials in w(z) with rational c...In this paper, we study the existence of the transcendental meromorphic solution of the delay differential equations , where a(z) is a rational function, and are polynomials in w(z) with rational coefficients, k is a positive integer. Under the assumption when above equations own transcendental meromorphic solutions with minimal hyper-type, we derive the concrete conditions on the degree of the right side of them. Specially, when w(z)=0 is a root of , its multiplicity is at most k. Some examples are given here to illustrate that our results are accurate.展开更多
This paper give the algebraic criteria for all delay stability of two dimensional degenerate differential systems with delays and give two examples to illustrate the use of them.
This paper deals with the numerical solution of initial value problems for systems of differential equations with a delay argument. The numerical stability of a linear multistep method is investigated by analysing the...This paper deals with the numerical solution of initial value problems for systems of differential equations with a delay argument. The numerical stability of a linear multistep method is investigated by analysing the solution of the lest equation y’(t)=Ay(t) + By(1-t),where A,B denote constant complex N×N-matrices,and t】0.We investigate carefully the characterization of the stability region.展开更多
This paper deals with the numerical solution of initial value problems for systems of differential equations with two delay terms. We investigate the stability of adaptations of the θ-methods in the numerical solutio...This paper deals with the numerical solution of initial value problems for systems of differential equations with two delay terms. We investigate the stability of adaptations of the θ-methods in the numerical solution of test equations u'(t) = a 11 u(t) + a12v(t) + b11 u(t - τ1) + b12v(t-τ2,v'(t) = a21 u(t) + a22 v(t) + b21 u(t -τ1,) + b22 v(t -τ2), t>0,with initial conditionsu(t)=u0(t),v(t) =v0(t), t≤0.where aij, bij∈C, τj >0, i,j = 1,2,, and u0(t), v0(t)are continuous and complex valued. Sufficient conditions for the asymptotic stability of test equation are derived. Furthermore, with respect to an appropriate definition of stability for the numerical method, it is proved that the linear θ-method is stable if and only if 1/2≤θ≤1 and the one-leg θ-method is stable if and only if θ= 1.展开更多
This paper deals with the stability of linear multistep methods for multidimensional differential systems with distributed delays. The delay-dependent stability of linear multistep methods with compound quadrature rul...This paper deals with the stability of linear multistep methods for multidimensional differential systems with distributed delays. The delay-dependent stability of linear multistep methods with compound quadrature rules is studied. Several new sufficient criteria of delay-dependent stability are obtained by means of the argument principle. An algorithm is provided to check delay-dependent stability. An example that illustrates the effectiveness of the derived theoretical results is given.展开更多
The paper deals with the criteria for the closed- loop stability of a noise control system in a duct. To study the stability of the system, the model of delay differential equation is derived from the propagation of a...The paper deals with the criteria for the closed- loop stability of a noise control system in a duct. To study the stability of the system, the model of delay differential equation is derived from the propagation of acoustic wave governed by a partial differential equation of hyperbolic type. Then, a simple feedback controller is designed, and its closed- loop stability is analyzed on the basis of the derived model of delay differential equation. The obtained criteria reveal the influence of the controller gain and the positions of a sensor and an actuator on the closed-loop stability. Finally, numerical simulations are presented to support the theoretical results.展开更多
By means of continuation theorem of the coincidence degree theory, sufficient conditions are obtained for the existence of periodic solutions of a kind of third-order neutral delay functional differential equation wit...By means of continuation theorem of the coincidence degree theory, sufficient conditions are obtained for the existence of periodic solutions of a kind of third-order neutral delay functional differential equation with deviating arguments.展开更多
The stability analysis of linear multistep methods for the numerical solutions of the systems of generalized neutral delay differential equations is discussed. The stability behaviour of linear multistep methods was a...The stability analysis of linear multistep methods for the numerical solutions of the systems of generalized neutral delay differential equations is discussed. The stability behaviour of linear multistep methods was analysed for the solution of the generalized system of linear neutral test equations, After the establishment of a sufficient condition for asymptotic stability of the solutions of the generalized system, it is shown that a linear multistep method is NGP(G)-stable if and only if it is A-stable.展开更多
Asymptotic stability of linear and interval linear fractional-order neutral delay differential systems described by the Caputo-Fabrizio (CF) fractional derivatives is investigated. Using Laplace transform, a novel cha...Asymptotic stability of linear and interval linear fractional-order neutral delay differential systems described by the Caputo-Fabrizio (CF) fractional derivatives is investigated. Using Laplace transform, a novel characteristic equation is derived. Stability criteria are established based on an algebraic approach and norm-based criteria are also presented. It is shown that asymptotic stability is ensured for linear fractional-order neutral delay differential systems provided that the underlying stability criterion holds for any delay parameter. In addition, sufficient conditions are derived to ensure the asymptotic stability of interval linear fractional order neutral delay differential systems. Examples are provided to illustrate the effectiveness and applicability of the theoretical results.展开更多
The stability analysis of the Rosenbrock method for the numerical solutions of system of delay differential equations was studied. The stability behavior of Rosenbrock method was analyzed for the solutions of linear t...The stability analysis of the Rosenbrock method for the numerical solutions of system of delay differential equations was studied. The stability behavior of Rosenbrock method was analyzed for the solutions of linear test equation. The result that the Rosenbrock method is GP-stable if and only if it is A-stable is obtained.展开更多
The LaSalle-type theorem for the neutral stochastic differential equations with delay is established for the first time and then applied to propose algebraic criteria of the stochastically asymptotic stability and alm...The LaSalle-type theorem for the neutral stochastic differential equations with delay is established for the first time and then applied to propose algebraic criteria of the stochastically asymptotic stability and almost exponential stability for the uncertain neutral stochastic differential systems with delay. An example is given to verify the effectiveness of obtained results.展开更多
Delay differential equations (DDEs), as well as neutral delay differential equations (NDDEs), are often used as a fundamental tool to model problems arising from various areas of sciences and engineering. However, NDD...Delay differential equations (DDEs), as well as neutral delay differential equations (NDDEs), are often used as a fundamental tool to model problems arising from various areas of sciences and engineering. However, NDDEs particularly the systems of these equations are special transcendental in nature;it has therefore, become a challenging task or times almost impossible to obtain a convergent approximate analytical solution of such equation. Therefore, this study introduced an analytical method to obtain solution of linear and nonlinear systems of NDDEs. The proposed technique is a combination of Homotopy analysis method (HAM) and natural transform method, and the He’s polynomial is modified to compute the series of nonlinear terms. The presented technique gives solution in a series form which converges to the exact solution or approximate solution. The convergence analysis and the maximum estimated error of the approach are also given. Some illustrative examples are given, and comparison for the accuracy of the results obtained is made with the existing ones as well as the exact solutions. The results reveal the reliability and efficiency of the method in solving systems of NDDEs and can also be used in various types of linear and nonlinear problems.展开更多
In this paper,we discuss the periodic solutions of the nonlinear singular neutral differential systems with infinite delay.By using matrix measure and Krasnoselskii's fixed point theorem,we obtained the suffcient con...In this paper,we discuss the periodic solutions of the nonlinear singular neutral differential systems with infinite delay.By using matrix measure and Krasnoselskii's fixed point theorem,we obtained the suffcient conditions of the existence of periodic solutions.展开更多
Ross’ epidemic model describing the transmission of malaria uses two classes of infection, one for humans and one for mosquitoes. This paper presents a stochastic extension of a deterministic vector-borne epidemic mo...Ross’ epidemic model describing the transmission of malaria uses two classes of infection, one for humans and one for mosquitoes. This paper presents a stochastic extension of a deterministic vector-borne epidemic model based only on the class of human infectious. The consistency of the model is established by proving that the stochastic delay differential equation describing the model has a unique positive global solution. The extinction of the disease is studied through the analysis of the stability of the disease-free equilibrium state and the persistence of the model. Finally, we introduce some numerical simulations to illustrate the obtained results.展开更多
This paper presents a bifurcation study of a mRNA-protein network with negative feedback and time delay. The network is modeled as a coupled system of N ordinary differential equations (ODEs) and N delay differential ...This paper presents a bifurcation study of a mRNA-protein network with negative feedback and time delay. The network is modeled as a coupled system of N ordinary differential equations (ODEs) and N delay differential equations (DDEs). Linear analysis of the stable equilibria shows the existence of a critical time delay beyond which limit cycle oscillations are born in a Hopf bifurcation. The Poincaré-Lindstedt perturbation method is applied to the nonlinear system, resulting in closed form approximate expressions for the amplitude and frequency of oscillation. We confirm our perturbation analysis results by numerically simulating the full 2N-dimensional nonlinear system for N = 2, 7, 15, and 30. Our results show that for small perturbations the equilibrium undergoes a supercritical Hopf and the system exhibits stable periodic solutions. Furthermore, our closed form numerical expressions exhibit the importance of the network’s negative feedback and nonlinear effects.展开更多
基金supported by the National Natural Science Foundation of China(61833005)the Humanities and Social Science Fund of Ministry of Education of China(23YJAZH031)+1 种基金the Natural Science Foundation of Hebei Province of China(A2023209002,A2019209005)the Tangshan Science and Technology Bureau Program of Hebei Province of China(19130222g)。
文摘Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existing work just adapted to autonomous cases,and the obtained results were mainly on exponential stabilization.In comparison with autonomous cases,non-autonomous systems are of great interest and represent an important challenge.Accordingly,discrete feedback control has here been adjusted with a time factor to stabilize an unstable non-autonomous HNSDDS,in which new Lyapunov-Krasovskii functionals and some novel technologies are adopted.It should be noted,in particular,that the stabilization can be achieved not only in the routine H_∞ and exponential forms,but also the polynomial form and even a general form.
文摘In this paper we study the degenerate differential system with delay:E(t)=Ax(t)+Bx(t-1)+f(t),give the canonical form of this systems and study this form of degeneration system with delay,have some results for the solvability of such systems and the uniqueness of their solutions.
基金supported by the National Natural Science Foundation of China(12171050,12071047)the Fundamental Research Funds for the Central Universities(500421126)。
文摘Let f be an entire solution of the Tumura-Clunie type non-linear delay differential equation.We mainly investigate the dynamical properties of Julia sets of f,and the lower bound estimates of the measure of related limiting directions is verified.
文摘We study nonhomogeneous systems of linear conformable fractional differential equations with pure delay.By using new conformable delayed matrix functions and the method of variation,we obtain a representation of their solutions.As an application,we derive a finite time stability result using the representation of solutions and a norm estimation of the conformable delayedmatrix functions.The obtained results are new,and they extend and improve some existing ones.Finally,an example is presented to illustrate the validity of our theoretical results.
文摘In this paper, we study the existence of the transcendental meromorphic solution of the delay differential equations , where a(z) is a rational function, and are polynomials in w(z) with rational coefficients, k is a positive integer. Under the assumption when above equations own transcendental meromorphic solutions with minimal hyper-type, we derive the concrete conditions on the degree of the right side of them. Specially, when w(z)=0 is a root of , its multiplicity is at most k. Some examples are given here to illustrate that our results are accurate.
文摘This paper give the algebraic criteria for all delay stability of two dimensional degenerate differential systems with delays and give two examples to illustrate the use of them.
文摘This paper deals with the numerical solution of initial value problems for systems of differential equations with a delay argument. The numerical stability of a linear multistep method is investigated by analysing the solution of the lest equation y’(t)=Ay(t) + By(1-t),where A,B denote constant complex N×N-matrices,and t】0.We investigate carefully the characterization of the stability region.
文摘This paper deals with the numerical solution of initial value problems for systems of differential equations with two delay terms. We investigate the stability of adaptations of the θ-methods in the numerical solution of test equations u'(t) = a 11 u(t) + a12v(t) + b11 u(t - τ1) + b12v(t-τ2,v'(t) = a21 u(t) + a22 v(t) + b21 u(t -τ1,) + b22 v(t -τ2), t>0,with initial conditionsu(t)=u0(t),v(t) =v0(t), t≤0.where aij, bij∈C, τj >0, i,j = 1,2,, and u0(t), v0(t)are continuous and complex valued. Sufficient conditions for the asymptotic stability of test equation are derived. Furthermore, with respect to an appropriate definition of stability for the numerical method, it is proved that the linear θ-method is stable if and only if 1/2≤θ≤1 and the one-leg θ-method is stable if and only if θ= 1.
基金Project supported by the National Natural Science Foundation of China(No.11471217)
文摘This paper deals with the stability of linear multistep methods for multidimensional differential systems with distributed delays. The delay-dependent stability of linear multistep methods with compound quadrature rules is studied. Several new sufficient criteria of delay-dependent stability are obtained by means of the argument principle. An algorithm is provided to check delay-dependent stability. An example that illustrates the effectiveness of the derived theoretical results is given.
基金the National Natural Science Foundation of China (10532050)
文摘The paper deals with the criteria for the closed- loop stability of a noise control system in a duct. To study the stability of the system, the model of delay differential equation is derived from the propagation of acoustic wave governed by a partial differential equation of hyperbolic type. Then, a simple feedback controller is designed, and its closed- loop stability is analyzed on the basis of the derived model of delay differential equation. The obtained criteria reveal the influence of the controller gain and the positions of a sensor and an actuator on the closed-loop stability. Finally, numerical simulations are presented to support the theoretical results.
文摘By means of continuation theorem of the coincidence degree theory, sufficient conditions are obtained for the existence of periodic solutions of a kind of third-order neutral delay functional differential equation with deviating arguments.
文摘The stability analysis of linear multistep methods for the numerical solutions of the systems of generalized neutral delay differential equations is discussed. The stability behaviour of linear multistep methods was analysed for the solution of the generalized system of linear neutral test equations, After the establishment of a sufficient condition for asymptotic stability of the solutions of the generalized system, it is shown that a linear multistep method is NGP(G)-stable if and only if it is A-stable.
文摘Asymptotic stability of linear and interval linear fractional-order neutral delay differential systems described by the Caputo-Fabrizio (CF) fractional derivatives is investigated. Using Laplace transform, a novel characteristic equation is derived. Stability criteria are established based on an algebraic approach and norm-based criteria are also presented. It is shown that asymptotic stability is ensured for linear fractional-order neutral delay differential systems provided that the underlying stability criterion holds for any delay parameter. In addition, sufficient conditions are derived to ensure the asymptotic stability of interval linear fractional order neutral delay differential systems. Examples are provided to illustrate the effectiveness and applicability of the theoretical results.
文摘The stability analysis of the Rosenbrock method for the numerical solutions of system of delay differential equations was studied. The stability behavior of Rosenbrock method was analyzed for the solutions of linear test equation. The result that the Rosenbrock method is GP-stable if and only if it is A-stable is obtained.
基金Project supported by the National Natural Science Foundation of China (No.60574025)the Natural Science Foundation of Hubei Province of China (Nos.2004ABA055, D200613002)the Natural Science Foundation of China Three Gorges University.
文摘The LaSalle-type theorem for the neutral stochastic differential equations with delay is established for the first time and then applied to propose algebraic criteria of the stochastically asymptotic stability and almost exponential stability for the uncertain neutral stochastic differential systems with delay. An example is given to verify the effectiveness of obtained results.
文摘Delay differential equations (DDEs), as well as neutral delay differential equations (NDDEs), are often used as a fundamental tool to model problems arising from various areas of sciences and engineering. However, NDDEs particularly the systems of these equations are special transcendental in nature;it has therefore, become a challenging task or times almost impossible to obtain a convergent approximate analytical solution of such equation. Therefore, this study introduced an analytical method to obtain solution of linear and nonlinear systems of NDDEs. The proposed technique is a combination of Homotopy analysis method (HAM) and natural transform method, and the He’s polynomial is modified to compute the series of nonlinear terms. The presented technique gives solution in a series form which converges to the exact solution or approximate solution. The convergence analysis and the maximum estimated error of the approach are also given. Some illustrative examples are given, and comparison for the accuracy of the results obtained is made with the existing ones as well as the exact solutions. The results reveal the reliability and efficiency of the method in solving systems of NDDEs and can also be used in various types of linear and nonlinear problems.
基金Supported by the National Nature Science Foundation of China(10771001) Supported by the Key Program of Ministry of Education of China(205068) Supported by the Foundation of Education Department of Anhui province(KJ2008B152) Supported by the Foundation of Innovation Team of Anhui University
文摘In this paper,we discuss the periodic solutions of the nonlinear singular neutral differential systems with infinite delay.By using matrix measure and Krasnoselskii's fixed point theorem,we obtained the suffcient conditions of the existence of periodic solutions.
文摘Ross’ epidemic model describing the transmission of malaria uses two classes of infection, one for humans and one for mosquitoes. This paper presents a stochastic extension of a deterministic vector-borne epidemic model based only on the class of human infectious. The consistency of the model is established by proving that the stochastic delay differential equation describing the model has a unique positive global solution. The extinction of the disease is studied through the analysis of the stability of the disease-free equilibrium state and the persistence of the model. Finally, we introduce some numerical simulations to illustrate the obtained results.
文摘This paper presents a bifurcation study of a mRNA-protein network with negative feedback and time delay. The network is modeled as a coupled system of N ordinary differential equations (ODEs) and N delay differential equations (DDEs). Linear analysis of the stable equilibria shows the existence of a critical time delay beyond which limit cycle oscillations are born in a Hopf bifurcation. The Poincaré-Lindstedt perturbation method is applied to the nonlinear system, resulting in closed form approximate expressions for the amplitude and frequency of oscillation. We confirm our perturbation analysis results by numerically simulating the full 2N-dimensional nonlinear system for N = 2, 7, 15, and 30. Our results show that for small perturbations the equilibrium undergoes a supercritical Hopf and the system exhibits stable periodic solutions. Furthermore, our closed form numerical expressions exhibit the importance of the network’s negative feedback and nonlinear effects.