期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
ALBERT预训练模型在医疗文书命名实体识别中的应用研究
1
作者 庞秋奔 李银 《信息与电脑》 2024年第6期152-156,共5页
中文电子病历命名实体识别主要是研究电子病历病程记录文书数据集,文章提出对医疗手术麻醉文书数据集进行命名实体识别的研究。利用轻量级来自Transformer的双向编码器表示(A Lite Bidirectional Encoder Representation from Transform... 中文电子病历命名实体识别主要是研究电子病历病程记录文书数据集,文章提出对医疗手术麻醉文书数据集进行命名实体识别的研究。利用轻量级来自Transformer的双向编码器表示(A Lite Bidirectional Encoder Representation from Transformers,ALBERT)预训练模型微调数据集和Tranfomers中的trainer训练器训练模型的方法,实现在医疗手术麻醉文书上识别手术麻醉事件命名实体与获取复杂麻醉医疗质量控制指标值。文章为医疗手术麻醉文书命名实体识别提供了可借鉴的思路,并且为计算复杂麻醉医疗质量控制指标值提供了一种新的解决方案。 展开更多
关键词 命名实体识别 轻量级来自Transformer的双向编码器表示(albert)模型 TRaNSFORMERS 麻醉医疗质量控制指标 医疗手术麻醉文书
下载PDF
基于ALBERT的网络威胁情报命名实体识别 被引量:1
2
作者 周景贤 王曾琪 《陕西科技大学学报》 北大核心 2023年第1期187-195,共9页
网络威胁情报实体识别是网络威胁情报分析的关键,针对传统词嵌入无法表征一词多义而难以有效识别网络威胁情报实体关键信息,同时面临指数级增长的威胁情报,识别模型的效率亟待提高等问题,提出一种基于ALBERT的网络威胁情报命名实体识别... 网络威胁情报实体识别是网络威胁情报分析的关键,针对传统词嵌入无法表征一词多义而难以有效识别网络威胁情报实体关键信息,同时面临指数级增长的威胁情报,识别模型的效率亟待提高等问题,提出一种基于ALBERT的网络威胁情报命名实体识别模型.该模型首先使用ALBERT提取威胁情报动态特征词向量,然后将特征词向量输入到双向长短期记忆网络(BiLSTM)层得到句子中每个词对应的标签,最后在条件随机场(CRF)层修正并以最大概率输出序列标签.识别模型对比实验结果显示,提出模型的F1值为92.21%,明显优于其他模型.在识别准确率相同的情况下,提出模型的时间和资源成本也较低,适用于网络威胁情报领域海量高效的实体识别任务. 展开更多
关键词 网络威胁情报 命名实体识别 bert albert 双向长短期记忆网络 条件随机场
下载PDF
基于ALBERT与BILSTM的糖尿病命名实体识别 被引量:9
3
作者 马诗语 黄润才 《中国医学物理学杂志》 CSCD 2021年第11期1438-1443,共6页
糖尿病命名实体识别技术能够从糖尿病文献中识别出关键信息,为糖尿病的诊断和治疗工作提供帮助。为此,本研究提出一种基于轻量型动态词向量模型(ALBERT)与双向长短记忆神经网络的命名实体识别方法,该方法旨在解决BERT语义单一、词汇量... 糖尿病命名实体识别技术能够从糖尿病文献中识别出关键信息,为糖尿病的诊断和治疗工作提供帮助。为此,本研究提出一种基于轻量型动态词向量模型(ALBERT)与双向长短记忆神经网络的命名实体识别方法,该方法旨在解决BERT语义单一、词汇量有限的问题。除此之外,还针对动态词向量训练耗时长、资源成本高的缺点进行了改进。本实验在糖尿病数据集上展开,并与现有主流模型进行对比。结果表明,融合ALBERT的实体识别效果均高于现有主流模型,且ALBERT较BERT训练速度有所提升。 展开更多
关键词 糖尿病 命名实体识别 轻量型动态词向量模型 双向长短记忆网络 条件随机场
下载PDF
基于ALBERT预训练模型的通用中文命名实体识别方法 被引量:2
4
作者 吕海峰 冀肖榆 +1 位作者 陈伟业 邸臻炜 《梧州学院学报》 2022年第3期10-17,共8页
HMM、CRF等机器学习算法在中文实体抽取任务上存在大量依靠特征提取及准确率低的缺陷,而基于BiLSTM-CRF、BERT等深度神经网络算法在中文实体识别准确率高,但BiLSTM模型依赖大规模标注数据,BERT存在参数量大、效率低等问题。该研究提出... HMM、CRF等机器学习算法在中文实体抽取任务上存在大量依靠特征提取及准确率低的缺陷,而基于BiLSTM-CRF、BERT等深度神经网络算法在中文实体识别准确率高,但BiLSTM模型依赖大规模标注数据,BERT存在参数量大、效率低等问题。该研究提出了基于ALBERT-Attention-CRF模型进行中文实体抽取的方法。首先将glove、Word2vec等静态词向量替换为ALBERT预训练模型字向量,可有效解决分词错误、数据稀疏、OOV、过拟合以及一词多义等问题;然后采用ALBERT作为编码层并对其输出利用Attention机制捕获上下文语义特征;最后结合CRF作为解码层输出实体正确标签,摒弃主流BiLSTM-CRF模型,最终在《人民日报》数据的测试集上取得了理想的效果。试验结果表明,该方法有助于提升通用中文实体识别的准确率和效率,其有效性也得到了较好的验证。 展开更多
关键词 命名实体识别 条件随机场 bert模型 albert模型 准确率
下载PDF
结合ALBERT和双向门控循环单元的专利文本分类 被引量:26
5
作者 温超东 曾诚 +1 位作者 任俊伟 张䶮 《计算机应用》 CSCD 北大核心 2021年第2期407-412,共6页
随着专利申请数量的快速增长,对专利文本实现自动分类的需求与日俱增。现有的专利文本分类算法大都采用Word2vec和全局词向量(GloVe)等方式获取文本的词向量表示,舍弃了大量词语的位置信息且不能表示出文本的完整语义。针对上述问题,提... 随着专利申请数量的快速增长,对专利文本实现自动分类的需求与日俱增。现有的专利文本分类算法大都采用Word2vec和全局词向量(GloVe)等方式获取文本的词向量表示,舍弃了大量词语的位置信息且不能表示出文本的完整语义。针对上述问题,提出了一种结合ALBERT和双向门控循环单元(BiGRU)的多层级专利文本分类模型ALBERT-BiGRU。该模型使用ALBERT预训练的动态词向量代替传统Word2vec等方式训练的静态词向量,提升了词向量的表征能力;并使用BiGRU神经网络模型进行训练,最大限度保留了专利文本中长距离词之间的语义关联。在国家信息中心公布的专利数据集上进行有效性验证,与Word2vec-BiGRU和GloVe-BiGRU相比,ALBERT-BiGRU的准确率在专利文本的部级别分别提高了9.1个百分点和10.9个百分点,在大类级别分别提高了9.5个百分点和11.2个百分点。实验结果表明,ALBERT-BiGRU能有效提升不同层级专利文本的分类效果。 展开更多
关键词 专利文本 文本分类 albert 双向门控循环单元 词向量
下载PDF
基于改进的提示学习方法的双通道情感分析模型
6
作者 沈君凤 周星辰 汤灿 《计算机应用》 CSCD 北大核心 2024年第6期1796-1806,共11页
针对先前提示学习方法中存在的模板迭代更新周期长、泛化能力差等问题,基于改进的提示学习方法提出一种双通道的情感分析模型。首先,将序列化后的提示模板与输入词向量一起引入注意力机制结构,在输入词向量在多层注意力机制中更新的同... 针对先前提示学习方法中存在的模板迭代更新周期长、泛化能力差等问题,基于改进的提示学习方法提出一种双通道的情感分析模型。首先,将序列化后的提示模板与输入词向量一起引入注意力机制结构,在输入词向量在多层注意力机制中更新的同时迭代更新提示模板;其次,在另一通道采用ALBERT(A Lite BERT(Bidirectional Encoder Representations from Transformers))模型提取语义信息;最后,输出用集成方式提取的语义特征,提升整体模型的泛化能力。所提模型在SemEval2014的Laptop和Restaurants数据集、ACL(Association for Computational Linguistics)的Twitter数据集和斯坦福大学创建的SST-2数据集上进行实验,分类准确率达到80.88%、91.78%、76.78%和95.53%,与基线模型BERT_Large相比,分别提升0.99%、1.13%、3.39%和2.84%;与P-tuning v2相比,所提模型的分类准确率在Restaurants数据集、Twitter数据集以及SST-2数据集上分别有2.88%、3.60%和2.06%的提升,且比原方法更早达到收敛状态。 展开更多
关键词 提示学习 bert albert 对抗训练 图卷积神经网络
下载PDF
基于图卷积神经网络的虚假新闻检测 被引量:2
7
作者 倪铭远 邓宏涛 高望 《计算机应用》 CSCD 北大核心 2023年第S01期49-55,共7页
当前检测虚假新闻的方法往往依赖于人工设计的特征,并且需要提供大量如用户信息、传播路径等不宜获取的隐私信息,使得模型泛化性较差。针对上述问题,提出一种基于图卷积网络(GCN)和预训练ALBERT(A-Lite-Bidirectional Encoder Represent... 当前检测虚假新闻的方法往往依赖于人工设计的特征,并且需要提供大量如用户信息、传播路径等不宜获取的隐私信息,使得模型泛化性较差。针对上述问题,提出一种基于图卷积网络(GCN)和预训练ALBERT(A-Lite-Bidirectional Encoder Representations from Transformers)构建的新闻检测模型GCN-ALBERT。首先,利用GCN捕获文本全局信息,提取新闻文本的全局语义信息;其次,利用自注意力机制融合ALBERT生成的局部信息与全局信息;最后,建立包含局部信息和全局信息的分类表示,从而实现虚假新闻检测。实验结果表明,所提模型在两个真实的英文数据集上与预训练语言模型BERT(Bidirectional Encoder Representations from Transformers)相比,宏F1值分别提高了3.0%和4.2%。所提模型能够有效融合新闻文本的全局信息和局部信息,准确率更高。 展开更多
关键词 虚假新闻检测 图卷积网络 albert 自注意力机制 预训练模型
下载PDF
多维度下政务答复质量评价模型的构建与应用 被引量:1
8
作者 付饶 刘惠篮 《哈尔滨理工大学学报》 CAS 北大核心 2023年第4期65-76,共12页
随着智慧政务的深入发展,针对政务平台在答复群众留言的质量与效率方面产生的多方面问题,依据政务绩效评估理论,结合ALBERT(A Lite BERT)等算法,研究了政务答复的及时性、相关性、详尽性、信息强度、可解释性和规范性;并根据自编码器提... 随着智慧政务的深入发展,针对政务平台在答复群众留言的质量与效率方面产生的多方面问题,依据政务绩效评估理论,结合ALBERT(A Lite BERT)等算法,研究了政务答复的及时性、相关性、详尽性、信息强度、可解释性和规范性;并根据自编码器提取的潜在空间表征和熵权法确定的表征权重,构建政务答复质量的综合评价模型。对海关业务咨询的答复质量进行评价,其中各表征权重分别为0.098、0.436、0.466;归一化评分在0.2~0.4之间的答复最多,占比39.7%;模型对3000条随机选取的答复评分与人工评分的一致性程度为0.777,MSE为0.035,表明该模型能够反映真实的答复质量。 展开更多
关键词 质量评价模型 a lite bert 文本相似度 词性标注 自编码器 熵权法
下载PDF
面向高中化学试题的命名实体识别
9
作者 张璐 马子睿 +1 位作者 王岳 马翠玲 《吉林大学学报(信息科学版)》 CAS 2023年第4期608-620,共13页
中文化学命名实体结构没有严格的构词规律可循,识别实体中包含字母、数字、特殊符号等多种形式,传统字向量模型无法有效区分化学术语中存在的嵌套实体和歧义实体。为此,将高中化学试题资源的命名实体划分为物质、性质、量值、实验四大类... 中文化学命名实体结构没有严格的构词规律可循,识别实体中包含字母、数字、特殊符号等多种形式,传统字向量模型无法有效区分化学术语中存在的嵌套实体和歧义实体。为此,将高中化学试题资源的命名实体划分为物质、性质、量值、实验四大类,并构建化学学科实体词汇表辅助人工标注。通过ALBERT预训练模型提取文本特征并生成动态字向量,结合BILSTM-CRF(Bidirectional Long Short-Term Memory with Conditional Random Field)模型对高中化学试题文本进行命名实体识别。实验结果表明,该模型的精确率、召回率和F1值分别达到了95.24%、95.26%、95.25%。 展开更多
关键词 命名实体识别 albert预训练模型 双向长短期记忆网络 条件随机场 化学资源文本
下载PDF
基于迁移学习的小数据集命名实体识别研究 被引量:5
10
作者 马良荔 李陶圆 +1 位作者 刘爱军 覃基伟 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第2期118-123,共6页
针对军事重要目标实体自动获取的问题,提出一种将基于转换器的轻量级双向编码表征(a lite BERT,ALBERT)、双向门控循环单元(Bi-Gated recurrent unit,BiGRU)、条件随机场(conditional random field,CRF)相结合的小样本数据集命名实体识... 针对军事重要目标实体自动获取的问题,提出一种将基于转换器的轻量级双向编码表征(a lite BERT,ALBERT)、双向门控循环单元(Bi-Gated recurrent unit,BiGRU)、条件随机场(conditional random field,CRF)相结合的小样本数据集命名实体识别方法.考虑到军事重要目标公开数据相对较少实体种类较多的问题,使用基于迁移学习的ALBERT作为分布式字符向量的生成模型;通过参数相对较少、泛化能力较强的BiGRU模型获取序列文本的上下文特征;通过CRF对输出添加约束,最终得到序列标注结果.实验结果表明:与传统的隐马尔卡夫模型(hidden Markov model,HMM)和双向长短期记忆-条件随机场(BiLSTM-CRF)模型相比,提出的方法F1值分别提升了7.1%和6.5%;与CRF模型相比,解决了人工定义特征模板效率低的问题,F1值提升了2.6%,为后续军事重要目标知识图谱的自动化构建提供了方法支撑. 展开更多
关键词 自然语言处理 中文命名实体识别 轻量级双向编码表征(albert) 双向门控循环单元 条件随机场
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部