期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
Spatial Heterogeneity Modeling Using Machine Learning Based on a Hybrid of Random Forest and Convolutional Neural Network (CNN)
1
作者 Amadou Kindy Barry Anthony Waititu Gichuhi Lawrence Nderu 《Journal of Data Analysis and Information Processing》 2024年第3期319-347,共29页
Spatial heterogeneity refers to the variation or differences in characteristics or features across different locations or areas in space. Spatial data refers to information that explicitly or indirectly belongs to a p... Spatial heterogeneity refers to the variation or differences in characteristics or features across different locations or areas in space. Spatial data refers to information that explicitly or indirectly belongs to a particular geographic region or location, also known as geo-spatial data or geographic information. Focusing on spatial heterogeneity, we present a hybrid machine learning model combining two competitive algorithms: the Random Forest Regressor and CNN. The model is fine-tuned using cross validation for hyper-parameter adjustment and performance evaluation, ensuring robustness and generalization. Our approach integrates Global Moran’s I for examining global autocorrelation, and local Moran’s I for assessing local spatial autocorrelation in the residuals. To validate our approach, we implemented the hybrid model on a real-world dataset and compared its performance with that of the traditional machine learning models. Results indicate superior performance with an R-squared of 0.90, outperforming RF 0.84 and CNN 0.74. This study contributed to a detailed understanding of spatial variations in data considering the geographical information (Longitude & Latitude) present in the dataset. Our results, also assessed using the Root Mean Squared Error (RMSE), indicated that the hybrid yielded lower errors, showing a deviation of 53.65% from the RF model and 63.24% from the CNN model. Additionally, the global Moran’s I index was observed to be 0.10. This study underscores that the hybrid was able to predict correctly the house prices both in clusters and in dispersed areas. 展开更多
关键词 Spatial Heterogeneity Spatial Data feature Selection STaNDaRDIZaTION Machine learning models hybrid models
下载PDF
MultiDMet: Designing a Hybrid Multidimensional Metrics Framework to Predictive Modeling for Performance Evaluation and Feature Selection
2
作者 Tesfay Gidey Hailu Taye Abdulkadir Edris 《Intelligent Information Management》 2023年第6期391-425,共35页
In a competitive digital age where data volumes are increasing with time, the ability to extract meaningful knowledge from high-dimensional data using machine learning (ML) and data mining (DM) techniques and making d... In a competitive digital age where data volumes are increasing with time, the ability to extract meaningful knowledge from high-dimensional data using machine learning (ML) and data mining (DM) techniques and making decisions based on the extracted knowledge is becoming increasingly important in all business domains. Nevertheless, high-dimensional data remains a major challenge for classification algorithms due to its high computational cost and storage requirements. The 2016 Demographic and Health Survey of Ethiopia (EDHS 2016) used as the data source for this study which is publicly available contains several features that may not be relevant to the prediction task. In this paper, we developed a hybrid multidimensional metrics framework for predictive modeling for both model performance evaluation and feature selection to overcome the feature selection challenges and select the best model among the available models in DM and ML. The proposed hybrid metrics were used to measure the efficiency of the predictive models. Experimental results show that the decision tree algorithm is the most efficient model. The higher score of HMM (m, r) = 0.47 illustrates the overall significant model that encompasses almost all the user’s requirements, unlike the classical metrics that use a criterion to select the most appropriate model. On the other hand, the ANNs were found to be the most computationally intensive for our prediction task. Moreover, the type of data and the class size of the dataset (unbalanced data) have a significant impact on the efficiency of the model, especially on the computational cost, and the interpretability of the parameters of the model would be hampered. And the efficiency of the predictive model could be improved with other feature selection algorithms (especially hybrid metrics) considering the experts of the knowledge domain, as the understanding of the business domain has a significant impact. 展开更多
关键词 Predictive modeling hybrid Metrics feature Selection model Selection algorithm analysis Machine learning
下载PDF
Estimating SVCV waterborne transmission and predicting experimental epidemic development:A modeling study using a machine learning approach
3
作者 Jiaji Pan Qijin Zeng +5 位作者 Wei Qin Jixiang Chu Haibo Jiang Haiyan Chang Jun Xiao Hao Feng 《Water Biology and Security》 2024年第1期60-70,共11页
Viral infectious diseases significantly threaten the sustainability of freshwater fish aquaculture.The lack of studies on epidemic transmission patterns and mechanisms inhibits the development of containment strategie... Viral infectious diseases significantly threaten the sustainability of freshwater fish aquaculture.The lack of studies on epidemic transmission patterns and mechanisms inhibits the development of containment strategies from the viewpoint of veterinary public health.This study raises an epidemic mathematical model considering water transmission with the aim of analyzing the transmission process more accurately.The basic reproduction number R0 was derived by the model parameter including the water transmission coefficient and was used for the analysis of the virus transmission.Spring viremia of carp virus(SVCV)and zebrafish were used as model viruses and animals,respectively,to conduct the transmission experiment.Transmission through water was achieved by connecting two aquarium tanks with a water channel but blocking the fish movement between the tanks.With the collected experimental data,we determined the optimal hybrid machine learning algorithm to analyze the transmission process using an established mathematical model.In addition,future transmission was predicted and validated using the epidemic model and an optimal algorithm.Finally,the sensitivity of model parameters and the simulations of R0 variation were performed based on the modified complex epidemic model.This study is of significance in providing theoretical guidance for minimizing R0 by manipulating model parameters with containment measures.More importantly,since the modified model and algorithm demonstrated better performance in handling freshwater fish transmission problems,this study advances the future application of transmissible disease modeling with larger datasets in freshwater fish aquaculture. 展开更多
关键词 Epidemic mathematical model hybrid machine learning algorithm Reproduction number Sensitivity analysis SVCV transmission
原文传递
BHLM:Bayesian theory-based hybrid learning model for multi-document summarization
4
作者 S.Suneetha A.Venugopal Reddy 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2018年第2期229-250,共22页
In order to understand and organize the document in an efficient way,the multidocument summarization becomes the prominent technique in the Internet world.As the information available is in a large amount,it is necess... In order to understand and organize the document in an efficient way,the multidocument summarization becomes the prominent technique in the Internet world.As the information available is in a large amount,it is necessary to summarize the document for obtaining the condensed information.To perform the multi-document summarization,a new Bayesian theory-based Hybrid Learning Model(BHLM)is proposed in this paper.Initially,the input documents are preprocessed,where the stop words are removed from the document.Then,the feature of the sentence is extracted to determine the sentence score for summarizing the document.The extracted feature is then fed into the hybrid learning model for learning.Subsequently,learning feature,training error and correlation coefficient are integrated with the Bayesian model to develop BHLM.Also,the proposed method is used to assign the class label assisted by the mean,variance and probability measures.Finally,based on the class label,the sentences are sorted out to generate the final summary of the multi-document.The experimental results are validated in MATLAB,and the performance is analyzed using the metrics,precision,recall,F-measure and rouge-1.The proposed model attains 99.6%precision and 75%rouge-1 measure,which shows that the model can provide the final summary efficiently. 展开更多
关键词 MULTI-DOCUMENT text feature sentence score hybrid learning model Bayesian theory
原文传递
基于自适应图的半监督图像分类方法
5
作者 刘威 王薪予 +5 位作者 魏宪 郭直清 靳宝 牛英杰 马灵潇 赵保钦 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2023年第1期119-128,共10页
针对半监督分类模型存在的模型复杂度高、构造正则化项难度大的问题,从丰富样本特征表示的角度出发,构造了自适应图结构的融合网络模型(AGSH)。该模型在卷积神经网络模型(CNN)基础上引入了自适应图卷积神经网络(AGCN)提取CNN模型特征间... 针对半监督分类模型存在的模型复杂度高、构造正则化项难度大的问题,从丰富样本特征表示的角度出发,构造了自适应图结构的融合网络模型(AGSH)。该模型在卷积神经网络模型(CNN)基础上引入了自适应图卷积神经网络(AGCN)提取CNN模型特征间的关系。对AGSH模型泛化性能的分析证明了该模型在解决半监督相关问题时的有效性。实验结果表明:融合模型在五种图像数据集上的分类精度相比于单一CNN模型分类精度均有提升。研究结论为解决小样本分类问题的建模方法提供了参考。 展开更多
关键词 自适应图 特征提取 融合模型 半监督学习 图像分类 卷积神经网络
下载PDF
基于宽度混合森林回归的城市固废焚烧过程二噁英排放软测量 被引量:5
6
作者 夏恒 汤健 +1 位作者 崔璨麟 乔俊飞 《自动化学报》 EI CAS CSCD 北大核心 2023年第2期343-365,共23页
二噁英是城市固废焚烧过程排放的痕量有机污染物.受限于相关技术的复杂度和高成本,二噁英排放浓度检测的大时滞已成为制约城市固废焚烧过程优化控制的关键因素之一.虽然具有低成本、快响应、高精度等特点的数据驱动软测量模型能够有效... 二噁英是城市固废焚烧过程排放的痕量有机污染物.受限于相关技术的复杂度和高成本,二噁英排放浓度检测的大时滞已成为制约城市固废焚烧过程优化控制的关键因素之一.虽然具有低成本、快响应、高精度等特点的数据驱动软测量模型能够有效解决上述问题,但二噁英建模方法必须要契合数据的小样本、高维度特性.对此,提出了由特征映射层、潜在特征提取层、特征增强层和增量学习层组成的宽度混合森林回归软测量方法.首先,构建由随机森林和完全随机森林构成的混合森林组进行高维特征映射;其次,依据贡献率对全联接混合矩阵进行潜在特征提取,采用信息度量准则保证潜在有价值信息的最大化传递和最小化冗余,降低模型的复杂度和计算消耗;然后,基于所提取潜在信息训练特征增强层以增强特征表征能力;最后,通过增量式学习策略构建增量学习层后采用Moore-Penrose伪逆获得权重矩阵.在基准数据集和城市固废焚烧过程二噁英数据集上的实验结果表明了方法的有效性和优越性. 展开更多
关键词 城市固废焚烧 二噁英排放建模 宽度学习 宽度混合森林回归 潜在特征 增量学习
下载PDF
基于混合特征学习数学模型的WSNs入侵检测研究 被引量:1
7
作者 高卫斌 《黑龙江工业学院学报(综合版)》 2023年第9期89-94,共6页
随着WSNs入侵方式的多样化,现有检测算法的准确性会显著下降,为此提出了基于混合特征学习数学模型的WSNs入侵检测方法。检测中先基于嗅探器定时获取传感器节点运行参数,并利用熵权法选取无线传感器网络节点混合特征因子,包括能耗率、丢... 随着WSNs入侵方式的多样化,现有检测算法的准确性会显著下降,为此提出了基于混合特征学习数学模型的WSNs入侵检测方法。检测中先基于嗅探器定时获取传感器节点运行参数,并利用熵权法选取无线传感器网络节点混合特征因子,包括能耗率、丢包率、报文发送频率、报文接收频率,再从获取传感器节点运行参数中获得四个特征因子对应的数值。利用BP神经网络构建入侵检测数学模型,以混合特征因子数值为输入,确定WSNs入侵类型,以实现对WSNs入侵行为的精确检测。结果表明:基于强化学习的入侵检测模型,基于双向循环生成对抗网络的入侵检测模型相比,所研究模型应用下,F1-measure数值更大,由此说明该模型入侵检测更全面,检测结果更准确,模型的整体性能更好。 展开更多
关键词 混合特征学习数学模型 WSNS BP神经网络 入侵检测
下载PDF
基于双通道混合网络模型的调制方式识别方法研究 被引量:1
8
作者 费顺超 张成璞 《沈阳理工大学学报》 CAS 2023年第6期34-39,47,共7页
调制方式识别是电子对抗领域的核心技术之一,针对传统调制识别方法识别精度不高的问题,借助深度学习方法构建一种双通道混合网络(CLRD)模型,通过对信号的时序特征和空间特征的联合提取完成信号的有效识别。以RML2016.10a数据集为仿真对... 调制方式识别是电子对抗领域的核心技术之一,针对传统调制识别方法识别精度不高的问题,借助深度学习方法构建一种双通道混合网络(CLRD)模型,通过对信号的时序特征和空间特征的联合提取完成信号的有效识别。以RML2016.10a数据集为仿真对象,识别11种调制信号。仿真结果表明:在低信噪比条件下,本文提出的CLRD模型具有较好的识别准确率,当信噪比在-2 dB以上时,平均识别准确率可达到91.56%;与其他常用模型相比,识别准确率均有一定程度的提高。 展开更多
关键词 调制方式识别 深度学习 联合特征提取 双通道混合网络模型
下载PDF
基于深度学习的作曲家分类问题 被引量:21
9
作者 胡振 傅昆 张长水 《计算机研究与发展》 EI CSCD 北大核心 2014年第9期1945-1954,共10页
在音乐信息检索领域,作曲家分类是一个十分重要的问题,这一问题的目标是通过音频数据来识别相应的作曲家信息.传统的分类算法都是通过提取复杂的特征来进行分类的,而深层神经网络在特征学习上具有比较强的能力,因此提出用深层神经网络... 在音乐信息检索领域,作曲家分类是一个十分重要的问题,这一问题的目标是通过音频数据来识别相应的作曲家信息.传统的分类算法都是通过提取复杂的特征来进行分类的,而深层神经网络在特征学习上具有比较强的能力,因此提出用深层神经网络来解决这一问题.为了结合不同深层神经网络模型的优点,设计了一种混合模型,该模型基于深度置信网络(deep belief network,DBN)和级联去噪自编码器(stacked denoising autoencoder,SDA),可以较好地解决作曲家分类问题.实验表明,该模型取得了76.26%的正确率,这一结果比单纯用某一种模型搭建的深层神经网络以及支持向量机要好.和图像数据类似,人脑在提取音乐特征也是分层的,每一层对信号的处理不一样,因此混合模型在解决作曲家分类问题上具有一定的优势. 展开更多
关键词 作曲家分类 深层神经网络 混合模型 特征学习 过学习
下载PDF
基于机器学习的普通话韵律规则提取 被引量:4
10
作者 朱廷劭 高文 《自动化学报》 EI CSCD 北大核心 2001年第6期763-769,共7页
韵律规则对于语音识别和语音合成研究具有重要意义 .目前的韵律规则大多是根据语言学的研究得出的一些定性的描述 .为了提取出更精确的定量描述的韵律规则 ,利用聚类分析提取出句子中音节的基频模式 ,在此基础上使用决策树进行韵律规则... 韵律规则对于语音识别和语音合成研究具有重要意义 .目前的韵律规则大多是根据语言学的研究得出的一些定性的描述 .为了提取出更精确的定量描述的韵律规则 ,利用聚类分析提取出句子中音节的基频模式 ,在此基础上使用决策树进行韵律规则的学习 ,获得了较好的实验结果 .文中首先讨论韵律规则和聚类分析及决策树 ,然后给出数据预处理技术及所采用的学习算法 。 展开更多
关键词 聚类分析 决策树 普通话韵律规则 机器学习 语音识别 语音合成
下载PDF
基于特征融合的中文文本情感分析方法 被引量:8
11
作者 赵宏 傅兆阳 王乐 《兰州理工大学学报》 CAS 北大核心 2022年第3期94-102,共9页
针对现有的中文文本情感分析方法不能从句法结构、上下文信息和局部语义特征等方面综合考量文本语义信息的问题,提出一种基于特征融合的中文文本情感分析方法.首先,采用Jieba分词工具对评论文本进行分词和词性标注,并采用词向量训练工具... 针对现有的中文文本情感分析方法不能从句法结构、上下文信息和局部语义特征等方面综合考量文本语义信息的问题,提出一种基于特征融合的中文文本情感分析方法.首先,采用Jieba分词工具对评论文本进行分词和词性标注,并采用词向量训练工具GloVe获取融入词性的预训练词向量;然后,将词向量分别作为引入Self-Attention的BiGRU和TextCNN的输入,使用引入Self-Attention的BiGRU从文本的句法结构和文本的上下文信息两个方面综合提取全局特征,使用TextCNN提取文本的局部语义特征;最后,将全局特征和局部语义特征进行融合,并使用Softmax进行文本情感分类.实验结果表明,本文方法可以有效提高文本情感分析的准确率. 展开更多
关键词 中文文本情感分析 特征融合 特征提取 语义特征 自注意力机制 深度学习混合模型
下载PDF
融合关系特征的半监督图像分类方法研究 被引量:1
12
作者 刘威 王薪予 +2 位作者 刘光伟 王东 牛英杰 《智能系统学报》 CSCD 北大核心 2022年第5期886-899,共14页
半监督深度学习模型具有泛化能力强,所需样本数较少等特点,经过10多年的发展,在理论和实际应用方面都取得了巨大的进步,然而建模样本内部“隐含”关系时模型缺乏解释性以及构造无监督正则化项难度较大等问题限制了半监督深度学习的进一... 半监督深度学习模型具有泛化能力强,所需样本数较少等特点,经过10多年的发展,在理论和实际应用方面都取得了巨大的进步,然而建模样本内部“隐含”关系时模型缺乏解释性以及构造无监督正则化项难度较大等问题限制了半监督深度学习的进一步发展。针对上述问题,从丰富样本特征表示的角度出发,构造了一种新的半监督图像分类模型—融合关系特征的半监督分类模型(semi-supervised classification model fused with relational features,SCUTTLE),该模型在卷积神经网络模型(convolutional neural networks,CNN)基础上引入了图卷积神经网络(graph convolutional networks,GCN),尝试通过GCN模型来提取CNN模型各层的低、高级特征间的关系,使得融合模型不仅具有特征提取能力,而且具有关系表示能力。通过对SCUTTLE模型泛化性能进行分析,进一步说明了该模型在解决半监督相关问题时的有效性。数值实验结果表明,三层CNN与一层GCN的融合模型在CIFAR10、CIFAR100、SVHN 3种数据集上与CNN监督学习模型的精度相比均可提升5%~6%的精度值,在最先进的ResNet、DenseNet、WRN(wide residual networks)与GCN的融合模型上同样证明了本文所提模型的有效性。 展开更多
关键词 关系表示 特征提取 图卷积神经网络 融合模型 半监督学习 图像分类 视觉卷积 泛化性能
下载PDF
面向同源蛋白质探测的一种新型混合深度学习模型
13
作者 张茜 孙一佳 +1 位作者 白琳 李陶深 《广西科学》 CAS 2019年第3期283-290,共8页
根据蛋白质氨基酸链探测其同源蛋白质,进而预测蛋白质的功能,是生物信息学研究领域的一个重要挑战,也是众多生物医学研究领域的基础研究内容,有着重要的科研价值和广泛的应用需求。其研究难点在于:(1)如何学习对同源蛋白质预测有效、有... 根据蛋白质氨基酸链探测其同源蛋白质,进而预测蛋白质的功能,是生物信息学研究领域的一个重要挑战,也是众多生物医学研究领域的基础研究内容,有着重要的科研价值和广泛的应用需求。其研究难点在于:(1)如何学习对同源蛋白质预测有效、有用的蛋白质特征信息;(2)如何更好地运用蛋白质特征信息,实现同源蛋白质的探测与识别。为了解决同源蛋白质探测与识别研究中的关键难点,本文提出一种基于混合深度学习架构的同源蛋白质探测与识别模型(HDLMPHP)。通过采用统一的“管道式”深度学习架构,将蛋白质特征学习和探测识别统一为一个整体,提高同源蛋白质探测与识别的效能。采用多组并行的深度卷积神经网络,学习蛋白质的各种属性信息,以期获得丰富的待检测蛋白质和靶蛋白质的高级相关性特征,并通过全连接方式使用多层RBM结构融合和精炼这些相关性特征为全局相关性特征。通过统一的深度网络连接方式,以探测和识别任务为导向,学习到对于同源蛋白质预测最有效、最全面的蛋白质特征信息。在标准数据集SCOPe上,对所提模型进行性能与效率评测,结果表明:本文提出的模型能有效地学习到符合任务导向的蛋白质特征数据,提升同源蛋白质探测与识别的准确度和召回率,优于现有的模型和算法。 展开更多
关键词 混合深度学习 同源蛋白质 深度卷积神经网络 蛋白质特征提取 深度学习模型 机器学习算法
下载PDF
中医临床数据疾病分类机器学习方法研究 被引量:3
14
作者 潘主强 张林 +1 位作者 颜仕星 张磊 《计算机工程与应用》 CSCD 北大核心 2017年第13期146-154,245,共10页
数字化经络仪、中医健康量表和四诊仪是中医临床常用辅助诊断工具,提供了很多中医临床数据。数据分布不均衡,同一个病例具有多个诊断标记是临床数据常见现象。以亚健康数据为例探索针对不均衡数据的机器学习分类方法;以肾脏疾病为例研... 数字化经络仪、中医健康量表和四诊仪是中医临床常用辅助诊断工具,提供了很多中医临床数据。数据分布不均衡,同一个病例具有多个诊断标记是临床数据常见现象。以亚健康数据为例探索针对不均衡数据的机器学习分类方法;以肾脏疾病为例研究综合三种辅助诊断工具的混合分类模型;以心血管病、血脂异常疾病、尿酸升高类疾病为例,探索多标记数据分类方法。实验均取得良好分类效果,同时所选择特征符合医学理论,具有临床指导意义。 展开更多
关键词 不均衡数据 混合模型 多标记学习 特征选择
下载PDF
基于增量非负矩阵分解的自适应背景模型 被引量:1
15
作者 董怀琴 潘彬彬 +1 位作者 陈文胜 徐晨 《深圳大学学报(理工版)》 EI CAS CSCD 北大核心 2016年第5期511-516,共6页
提出一种基于增量非负矩阵分解的自适应背景模型,以处理动态背景变化.当有新的数据流到达时,利用增量非负矩阵分解有效地更新背景模型.实验结果表明,与非负矩阵分解相比,增量非负矩阵分解不仅运算时间更少,而且能够提取出更好的前景.
关键词 应用数学 非负矩阵分解 背景建模 增量学习 特征提取 满秩分解 前景提取
下载PDF
一种基于混合深度置信模型的面部表情识别方法 被引量:1
16
作者 杨雨浓 房鼎益 王洪 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第6期142-147,共6页
针对特征提取算法中存在的特征标注困难、有效特征丢失等问题,文中提出一种基于混合深度置信模型的识别方法,该方法利用深度模型来解决维度灾难,实现视觉特征的分层学习,从而提高识别精度.首先,为达到融合局部特征和全局特征信息的目的... 针对特征提取算法中存在的特征标注困难、有效特征丢失等问题,文中提出一种基于混合深度置信模型的识别方法,该方法利用深度模型来解决维度灾难,实现视觉特征的分层学习,从而提高识别精度.首先,为达到融合局部特征和全局特征信息的目的,本文根据表情特征分布特点进行图像分割,由分割的关键区域图像和整体图像加上不同的贡献度形成混合模型;其次,将图像输入到深度置信网络中,实现数字图像视觉特征的分层学习,抽象出代表表情类别的有效特征,从而避免人工设计特征提取中存在的提取困难和特征丢失的缺陷;最后,利用训练样本求解、更新混合模型组件的贡献度,提升算法的精度和鲁棒性.在JAFFE、Cohn-kanade表情库中的实验结果表明,本文提出的混合深度置信模型方法能对表情视觉特征进行有效学习,提高了表情识别的精度,识别率达到97.94%. 展开更多
关键词 表情识别 置信网络 混合模型 特征学习
下载PDF
药物-靶点亲和力预测的全局特征提取策略 被引量:1
17
作者 彭泽佳 张晓龙 《计算机工程与设计》 北大核心 2022年第3期843-850,共8页
为有效解决药物靶点亲和力预测中单模型提取特征种类受限问题,结合深度学习混合模型,提出一种深度并行全局特征提取策略。利用卷积神经网络(CNN)和特征存储融合层构建局部特征提取器,实现药物靶点序列局部特征的多层次提取、存储与压缩... 为有效解决药物靶点亲和力预测中单模型提取特征种类受限问题,结合深度学习混合模型,提出一种深度并行全局特征提取策略。利用卷积神经网络(CNN)和特征存储融合层构建局部特征提取器,实现药物靶点序列局部特征的多层次提取、存储与压缩;利用卷积神经网络(CNN)和双向长短时记忆(BiLSTM)神经网络的串行混合模型构建上下文特征提取器,提取局部特征之间的上下文联系;将两种互补特征进行融合。该特征提取策略解决了单模型提取特征种类受限问题,缓解了数据集差异对特征提取效率的影响。实验结果表明,该特征提取策略有助于提升预测模型的预测性能。 展开更多
关键词 药物靶点结合亲和力 深度学习 特征提取 混合模型 特征融合
下载PDF
基于“超星学习通平台”的《高等数学》混合教学模式的探索 被引量:11
18
作者 潘花 仇海全 《黑河学院学报》 2020年第3期100-102,共3页
传统的教学模式已经难以满足培养应用型、创新型人才的教学目标。在分析《高等数学》教学现状的基础上,对基于"超星学习通平台"的《高等数学》混合教学模式进行探索与实践。教学实践表明,采用该模式对提高《高等数学》课程的... 传统的教学模式已经难以满足培养应用型、创新型人才的教学目标。在分析《高等数学》教学现状的基础上,对基于"超星学习通平台"的《高等数学》混合教学模式进行探索与实践。教学实践表明,采用该模式对提高《高等数学》课程的教学质量,激发学生学习的积极性和主动性有显著成效。 展开更多
关键词 高等数学 超星学习通平台 混合教学模式
下载PDF
基于时空特征融合的城市洪涝混合深度学习预测
19
作者 司徒祖祥 冯婉恩 +4 位作者 钟琪升 廖晓婷 饶开昕 张佳博 周倩倩 《中国给水排水》 CAS CSCD 北大核心 2024年第17期131-136,共6页
传统物理模型在二维地表淹没计算中虽然实现了高精度的求解,但其构建过程复杂、校准难度高,且计算效率低,在实时洪涝预报方面存在局限性。深度学习作为人工智能领域的重要分支,具有强大的数据处理和学习能力,可为洪涝预测提供变革性、... 传统物理模型在二维地表淹没计算中虽然实现了高精度的求解,但其构建过程复杂、校准难度高,且计算效率低,在实时洪涝预报方面存在局限性。深度学习作为人工智能领域的重要分支,具有强大的数据处理和学习能力,可为洪涝预测提供变革性、创新性的技术手段。为此,提出了一种基于时空特征融合技术的城市洪涝混合深度学习预测模型,充分结合卷积神经网络和循环神经网络对空间和时间数据的学习优势,建立了SegNet-GRU混合模型。该模型能够准确预测研究区域在不同降雨情景下的极值水深和地表积水演变过程,实现了良好的预测精度(平均绝对误差、均方根误差、纳什效率系数和克林-古普塔效率系数分别为0.0085、0.0306、0.9627、0.6949)和处理速度(较一、二维模型预测速率提升近160倍)。 展开更多
关键词 城市洪涝预测 时空特征融合 深度学习 混合模型
原文传递
电力系统定碳排运行域:概念与方法
20
作者 冯健冰 任洲洋 +1 位作者 姜云鹏 李文沅 《中国电机工程学报》 EI 2024年第22期8846-8859,I0013,共15页
该文首次提出电力系统定碳排运行域(committed carbon emissions operation regions,CCEOR)的概念,刻画电力系统低碳安全运行空间(low-carbon operation space,LCOS),为新型电力系统低碳、安全运行提供科学、全面的决策依据,进一步丰富... 该文首次提出电力系统定碳排运行域(committed carbon emissions operation regions,CCEOR)的概念,刻画电力系统低碳安全运行空间(low-carbon operation space,LCOS),为新型电力系统低碳、安全运行提供科学、全面的决策依据,进一步丰富现有的低碳分析理论。针对高维非线性时空耦合变量下,定碳排运行域边界求解的关键技术瓶颈,基于数据与模型混合驱动思想建立域边界的高效求解方法。该方法结合特征工程,基于注意力机制与深度卷积的神经网络架构,以及数据与模型混合驱动的训练机制,有效保障CCEOR边界求解的高效性和准确性。最后,通过IEEE-118测试系统进行仿真分析,验证CCEOR能够有效评估系统的低碳运行态势,并确定低碳安全的调控方向。同时,验证所提域边界求解方法的高效性和高维适用性。通过可视化分析CCEOR随关键约束的变化特性,剖析LCOS的边界特征并发现其存在的空间饱和现象,进一步揭示电力系统运行的电碳耦合机理。 展开更多
关键词 低碳运行 域理论 深度学习 特征工程 数据与模型混合驱动
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部