In this paper, we research the probability theory and matrix transformation based technique to manage the data for processing and analysis. Clustering analysis research has a long history, over the decades, the import...In this paper, we research the probability theory and matrix transformation based technique to manage the data for processing and analysis. Clustering analysis research has a long history, over the decades, the importance and the cross characteristics with other research direction to get the affirmation of the people. The probability theory and linear algebra act as the powerful tool for analyzing and mining data. The experimental result illustrates the effectiveness. In the near future, we plan to conduct more theoretical analysis on the topic.展开更多
The wear of cutting tools in the machining of 2024Al alloy composites reinforced with Al2O3 particles using varying sizes and volume fractions of particles up to 23.3vol% was investigated by a turning process using co...The wear of cutting tools in the machining of 2024Al alloy composites reinforced with Al2O3 particles using varying sizes and volume fractions of particles up to 23.3vol% was investigated by a turning process using coated carbide tools K10 and TP30 at different cut- ting speeds. Machining tests were performed with a plan of experiments based on the Taguchi method. The tool life model was developed in terms of cutting speed, size, and volume fraction of particles by multiple linear regressions. The analysis of variance (ANOVA) was also employed to carry out the effects of these parameters on the cutting tool life. The test results show that the tool life decreases with the increase of cutting speed for both cutting tools K10 and TP30, and the tool life of the K10 tool is significantly longer than that of the TP30 tool. For the tool life, cutting speed is found to be the most effective factor followed by particle content and particle size, respectively. The predicted tool life of cutting tools is found to be in very good agreement with the experimentally observed ones.展开更多
With common borders of the population, total area, and GDP (PPP-based) of Economic Cooperation Organization (ECO) member states are estimated as 416 million persons, 7.9 million m2, and US$2.7 trillion respective...With common borders of the population, total area, and GDP (PPP-based) of Economic Cooperation Organization (ECO) member states are estimated as 416 million persons, 7.9 million m2, and US$2.7 trillion respectively (2010 data). Although heterogeneous in the extent, there is economic development, overall, with serious energy and transport-transit relations among countries that is reflected in growing trade turnover year-by-year. However, there are still rather unused resources and capacity in such areas of cooperation among countries as exchange of energy, transport services, agricultural and industrial goods, use of opportunities for tourism, promoting investment and innovation processes and other areas. Certainly, maximum and optimal use of these resources calls for availability of analytical means capable of accounting for relations both within member states and among them. The implementation of computable general equilibrium (CGE) modeling in each member state would thus be of great significance in resolution of these problems both in terms of accounting for input-output linkages within the countries as well as enabling impact of main trading partners and goods and services among countries. The analysis carried out indicates that there are a number of problems in application of CGE model in most of the member states. As such, input-output tables are not compiled in some countries, while in others despite the fact that these tables are compiled, there are no attempts to build the model, yet in other countries, even if the CGE model is implemented, there are difficulties in taking into account the real results in the face of serious problems related to improving national accounts system database. Summarizing these problems, it is possible to conclude that to ensure the application of a CGE model,there is a great need to work out procedures of compilation of a social accounts matrix (SAM) that lies on the basis of this model, for which the relevant statistics of a member state must be improved. Considering the above-mentioned, the presented research, makes procedures and proposals on compilation of SAM, improves statistical data for researching the extent of application of CGE Model in ECO member states, and identifies the degree of availability and organization of relevant data to develop input-output tables and respective SAM.展开更多
The establishment of an elastostatic stiffness model for over constrained parallel manipulators(PMs),particularly those with over constrained subclosed loops,poses a challenge while ensuring numerical stability.This s...The establishment of an elastostatic stiffness model for over constrained parallel manipulators(PMs),particularly those with over constrained subclosed loops,poses a challenge while ensuring numerical stability.This study addresses this issue by proposing a systematic elastostatic stiffness model based on matrix structural analysis(MSA)and independent displacement coordinates(IDCs)extraction techniques.To begin,the closed-loop PM is transformed into an open-loop PM by eliminating constraints.A subassembly element is then introduced,which considers the flexibility of both rods and joints.This approach helps circumvent the numerical instability typically encountered with traditional constraint equations.The IDCs and analytical constraint equations of nodes constrained by various joints are summarized in the appendix,utilizing multipoint constraint theory and singularity analysis,all unified within a single coordinate frame.Subsequently,the open-loop mechanism is efficiently closed by referencing the constraint equations presented in the appendix,alongside its elastostatic model.The proposed method proves to be both modeling and computationally efficient due to the comprehensive summary of the constraint equations in the Appendix,eliminating the need for additional equations.An example utilizing an over constrained subclosed loops demonstrate the application of the proposed method.In conclusion,the model proposed in this study enriches the theory of elastostatic stiffness modeling of PMs and provides an effective solution for stiffness modeling challenges they present.展开更多
Firstly, the research progress of grey model GM (1,1) is summarized, which is divided into three development stages: assimilation, alienation and melting stages. Then, the matrix analysis theory is used to study th...Firstly, the research progress of grey model GM (1,1) is summarized, which is divided into three development stages: assimilation, alienation and melting stages. Then, the matrix analysis theory is used to study the modeling mechanism of GM (1,1), which decomposes the modeling data matrix into raw data transformation matrix, accumulated generating operation matrix and background value selection matrix. The changes of these three matrices are the essential reasons affecting the modeling and the accuracy of GM (1,1). Finally, the paper proposes a generalization grey model GGM (1,1), which is a extended form of GM (1,1) and also a unified form of model GM (1,1), model GM (1,1,α), stage grey model, hopping grey model, generalized accumulated model, strengthening operator model, weakening operator model and unequal interval model. And the theory and practical significance of the extended model is analyzed.展开更多
Much research has been devoted to examination of the financial easing policy of the European Central Bank(ECB).However,this study is one of the first to use a dynamic micro-founded model to investigate empirically the...Much research has been devoted to examination of the financial easing policy of the European Central Bank(ECB).However,this study is one of the first to use a dynamic micro-founded model to investigate empirically the impact of the ECB’s Quantitative Easing(QE)policy on consumption and investment by economic agents in Italy(households,government,firms,and the rest of the world).For this purpose,we constructed a Financial Social Accounting Matrix(FSAM)for the Italian economy for the year 2009 to calibrate a dynamic computable general equilibrium model(DCGE).This model allowed us to evaluate the direct and indirect impact of money flow on the behavior of consumption and investment.The findings of the study confirmed the positive impact of the ECB’s monetary policy on the level of investment and consumption.展开更多
The issue of the stability and controller design of Takagi-Sugeno(T-S) fuzzy control systems with time-delay is investigated under imperfect premise matching when the T-S fuzzy time-delay model and fuzzy controller ...The issue of the stability and controller design of Takagi-Sugeno(T-S) fuzzy control systems with time-delay is investigated under imperfect premise matching when the T-S fuzzy time-delay model and fuzzy controller do not share the same membership functions.A new stability criterion which contains the information of membership functions is derived.The new stability criterion is less conservative,and enhances the design flexibility.Two numerical examples are presented to illustrate the conservativeness and effectiveness of the proposed method.展开更多
Latent factor(LF) models are highly effective in extracting useful knowledge from High-Dimensional and Sparse(HiDS) matrices which are commonly seen in various industrial applications. An LF model usually adopts itera...Latent factor(LF) models are highly effective in extracting useful knowledge from High-Dimensional and Sparse(HiDS) matrices which are commonly seen in various industrial applications. An LF model usually adopts iterative optimizers,which may consume many iterations to achieve a local optima,resulting in considerable time cost. Hence, determining how to accelerate the training process for LF models has become a significant issue. To address this, this work proposes a randomized latent factor(RLF) model. It incorporates the principle of randomized learning techniques from neural networks into the LF analysis of HiDS matrices, thereby greatly alleviating computational burden. It also extends a standard learning process for randomized neural networks in context of LF analysis to make the resulting model represent an HiDS matrix correctly.Experimental results on three HiDS matrices from industrial applications demonstrate that compared with state-of-the-art LF models, RLF is able to achieve significantly higher computational efficiency and comparable prediction accuracy for missing data.I provides an important alternative approach to LF analysis of HiDS matrices, which is especially desired for industrial applications demanding highly efficient models.展开更多
Short-leg shear wall structures are a new form of building structure that combine the merits of both frame and shear wall structures. Its architectural features, structure bearing and engineering cost are reasonable. ...Short-leg shear wall structures are a new form of building structure that combine the merits of both frame and shear wall structures. Its architectural features, structure bearing and engineering cost are reasonable. To analyze the elastic-plastic response of a short-leg shear wall structure during an earthquake, this study modified the multiple-vertical-rod element model of the shear wall, considered the shear lag effect and proposed a multiple-vertical-rod element coupling beam model with a new local stiffness domain. Based on the principle of minimum potential energy and the variational principle, the stiffness matrixes of a short-leg shear wall and a coupling beam are derived in this study. Furthermore, the bending shear correlation for the analysis of different parameters to describe the structure, such as the beam height to span ratio, short-leg shear wall height to thickness ratio, and steel ratio are introduced. The results show that the height to span ratio directly affects the structural integrity; and the short-leg shear wall height to thickness ratio should be limited to a range of approximately 6.0 to 7.0. The design of short-leg shear walls should be in accordance with the "strong wall and weak beam" principle.展开更多
The efficient dynamic modeling and vibration transfer analysis of a fluid-delivering branch pipeline(FDBP)are essential for analyzing vibration coupling effects and implementing vibration reduction optimization.Theref...The efficient dynamic modeling and vibration transfer analysis of a fluid-delivering branch pipeline(FDBP)are essential for analyzing vibration coupling effects and implementing vibration reduction optimization.Therefore,this study proposes a reduced-order dynamic modeling method suitable for FDBPs and then analyzes the vibration transfer characteristics.For the modeling method,the finite element method and absorbing transfer matrix method(ATMM)are integrated,considering the fluid–structure coupling effect and fluid disturbances.The dual-domain dynamic substructure method is developed to perform the reduced-order modeling of FDBP,and ATMM is adopted to reduce the matrix order when solving fluid disturbances.Furthermore,the modeling method is validated by experiments on an H-shaped branch pipeline.Finally,transient and steady-state vibration transfer analyses of FDBP are performed,and the effects of branch locations on natural characteristics and vibration transfer behavior are analyzed.Results show that transient vibration transfer represents the transfer and conversion of the kinematic,strain,and damping energies,while steady-state vibration transfer characteristics are related to the vibration mode.In addition,multiple-order mode exchanges are triggered when branch locations vary in frequency-shift regions,and the mode-exchange regions are also the transformation ones for vibration transfer patterns.展开更多
In order to estimate the most effect stage and process on population growth and effective conserve the rare endangered plant Davidia involucrata, we analyzed the dynamics and the contributions of life-history componen...In order to estimate the most effect stage and process on population growth and effective conserve the rare endangered plant Davidia involucrata, we analyzed the dynamics and the contributions of life-history components on population dynamics based on Lefkovitch matrix model and sensitivity analysis. The life cycle of Davidia involucrata was divided into six stages (seed, seedling, juvenile, immature, early adult and late adult) based on the species characteristics and published literature data, the survival rates in each life-history stage were simulated using a static life table, and the fecundity of each stage was determined according to sample information. The results showed that the structure of the observed population was not ideal, and the numbers of seedlings and coppice shoots was similar. The population growth rate was influenced largely by individual growth process, and asexual reproduction made a larger contribution to population growth than sexual reproduction. However, sexual reproduction was more important than asexual reproduction, because most asexual reproducing individuals (the coppice shoots) were derived mainly from human destruction (e.g. felling trees). The most important stage was stage V (late adult), associated with seed production and germination. Therefore, conservation of Davidia involucrata populations should focus on stage V and sexual reproduction, in order to improve the seed production and germination rate, and to promote population stability and development.展开更多
In this paper, a new mathematical form, matrix, continued fraction (MCF) is introduced to describe the decay of effects of an equilibrant system of forces acting on a sphere of an elastic body. By this way, the famous...In this paper, a new mathematical form, matrix, continued fraction (MCF) is introduced to describe the decay of effects of an equilibrant system of forces acting on a sphere of an elastic body. By this way, the famous Saint-Venant's principle is proved often but not always valid in computational mechanics.展开更多
We investigate the structure of a large precision matrix in Gaussian graphical models by decomposing it into a low rank component and a remainder part with sparse precision matrix.Based on the decomposition,we propose...We investigate the structure of a large precision matrix in Gaussian graphical models by decomposing it into a low rank component and a remainder part with sparse precision matrix.Based on the decomposition,we propose to estimate the large precision matrix by inverting a principal orthogonal decomposition(IPOD).The IPOD approach has appealing practical interpretations in conditional graphical models given the low rank component,and it connects to Gaussian graphical models with latent variables.Specifically,we show that the low rank component in the decomposition of the large precision matrix can be viewed as the contribution from the latent variables in a Gaussian graphical model.Compared with existing approaches for latent variable graphical models,the IPOD is conveniently feasible in practice where only inverting a low-dimensional matrix is required.To identify the number of latent variables,which is an objective of its own interest,we investigate and justify an approach by examining the ratios of adjacent eigenvalues of the sample covariance matrix?Theoretical properties,numerical examples,and a real data application demonstrate the merits of the IPOD approach in its convenience,performance,and interpretability.展开更多
Traffic information is so far less than the number of OD variables, that it is difficult to obtain the satisfactory solution. In this paper, a method based on Quantum behaved Particle Swarm Optimization (QPSO) algorit...Traffic information is so far less than the number of OD variables, that it is difficult to obtain the satisfactory solution. In this paper, a method based on Quantum behaved Particle Swarm Optimization (QPSO) algorithm is developed to obtain the global optimal solution. It designs the method based on QPSO algorithm to solve the OD matrix prediction model, lists the detailed steps and points out how to choose the PSO operator. Moreover, it uses MATLAB program-ming language to carry out the simulation test. The simulation results show that the method has higher efficiency and accuracy.展开更多
Simulated photo-degradation of fluorescent dissolved organic matter(FDOM) in Lake Baihua(BH) and Lake Hongfeng(HF) was investigated with three-dimensional excitationemission matrix(3 DEEM) fluorescence combined with t...Simulated photo-degradation of fluorescent dissolved organic matter(FDOM) in Lake Baihua(BH) and Lake Hongfeng(HF) was investigated with three-dimensional excitationemission matrix(3 DEEM) fluorescence combined with the fluorescence regional integration(FRI),parallel factor(PARAFAC) analysis,and multi-order kinetic models.In the FRI analysis,fulvic-like and humic-like materials were the main constituents for both BH-FDOM and HF-FDOM.Four individual components were identified by use of PARAFAC analysis as humic-like components(C1),fulvic-like components(C2),protein-like components(C3) and unidentified components(C4).The maximum 3 DEEM fluorescence intensity of PARAFAC components C1-C3 decreased by about 60%,70% and 90%,respectively after photo-degradation.The multi-order kinetic model was acceptable to represent the photo-degradation of FDOM with correlation coefficient(Radj2)(0.963-0.998).The photo-degradation rate constants(kn) showed differences of three orders of magnitude,from 1.09 × 10-6 to 4.02 × 10-4 min-1,and half-life of multi-order model(T1/2n)ranged from 5.26 to 64.01 min.The decreased values of fluorescence index(FI) and biogenic index(BI),the fact that of percent fluorescence response parameter of Region I(PⅠ,n) showed the greatest change ratio,followed by percent fluorescence response parameter of Region II(PⅡ,n,while the largest decrease ratio was found for C3 components,and the lowest T1/2n was observed for C3,indicated preferential degradation of protein-like materials/components derived from biological sources during photodegradation.This research on the degradation of FDOM by 3 DEEM/FRI-PARAFAC would be beneficial to understanding the photo-degradation of FD OM in natural environments and accurately predicting the environmental behaviors of contaminants in the presence of FDOM.展开更多
文摘In this paper, we research the probability theory and matrix transformation based technique to manage the data for processing and analysis. Clustering analysis research has a long history, over the decades, the importance and the cross characteristics with other research direction to get the affirmation of the people. The probability theory and linear algebra act as the powerful tool for analyzing and mining data. The experimental result illustrates the effectiveness. In the near future, we plan to conduct more theoretical analysis on the topic.
文摘The wear of cutting tools in the machining of 2024Al alloy composites reinforced with Al2O3 particles using varying sizes and volume fractions of particles up to 23.3vol% was investigated by a turning process using coated carbide tools K10 and TP30 at different cut- ting speeds. Machining tests were performed with a plan of experiments based on the Taguchi method. The tool life model was developed in terms of cutting speed, size, and volume fraction of particles by multiple linear regressions. The analysis of variance (ANOVA) was also employed to carry out the effects of these parameters on the cutting tool life. The test results show that the tool life decreases with the increase of cutting speed for both cutting tools K10 and TP30, and the tool life of the K10 tool is significantly longer than that of the TP30 tool. For the tool life, cutting speed is found to be the most effective factor followed by particle content and particle size, respectively. The predicted tool life of cutting tools is found to be in very good agreement with the experimentally observed ones.
文摘With common borders of the population, total area, and GDP (PPP-based) of Economic Cooperation Organization (ECO) member states are estimated as 416 million persons, 7.9 million m2, and US$2.7 trillion respectively (2010 data). Although heterogeneous in the extent, there is economic development, overall, with serious energy and transport-transit relations among countries that is reflected in growing trade turnover year-by-year. However, there are still rather unused resources and capacity in such areas of cooperation among countries as exchange of energy, transport services, agricultural and industrial goods, use of opportunities for tourism, promoting investment and innovation processes and other areas. Certainly, maximum and optimal use of these resources calls for availability of analytical means capable of accounting for relations both within member states and among them. The implementation of computable general equilibrium (CGE) modeling in each member state would thus be of great significance in resolution of these problems both in terms of accounting for input-output linkages within the countries as well as enabling impact of main trading partners and goods and services among countries. The analysis carried out indicates that there are a number of problems in application of CGE model in most of the member states. As such, input-output tables are not compiled in some countries, while in others despite the fact that these tables are compiled, there are no attempts to build the model, yet in other countries, even if the CGE model is implemented, there are difficulties in taking into account the real results in the face of serious problems related to improving national accounts system database. Summarizing these problems, it is possible to conclude that to ensure the application of a CGE model,there is a great need to work out procedures of compilation of a social accounts matrix (SAM) that lies on the basis of this model, for which the relevant statistics of a member state must be improved. Considering the above-mentioned, the presented research, makes procedures and proposals on compilation of SAM, improves statistical data for researching the extent of application of CGE Model in ECO member states, and identifies the degree of availability and organization of relevant data to develop input-output tables and respective SAM.
基金Supported by National Natural Science Foundation of China (Grant No.52275036)Key Research and Development Project of the Jiaxing Science and Technology Bureau (Grant No.2022BZ10004)。
文摘The establishment of an elastostatic stiffness model for over constrained parallel manipulators(PMs),particularly those with over constrained subclosed loops,poses a challenge while ensuring numerical stability.This study addresses this issue by proposing a systematic elastostatic stiffness model based on matrix structural analysis(MSA)and independent displacement coordinates(IDCs)extraction techniques.To begin,the closed-loop PM is transformed into an open-loop PM by eliminating constraints.A subassembly element is then introduced,which considers the flexibility of both rods and joints.This approach helps circumvent the numerical instability typically encountered with traditional constraint equations.The IDCs and analytical constraint equations of nodes constrained by various joints are summarized in the appendix,utilizing multipoint constraint theory and singularity analysis,all unified within a single coordinate frame.Subsequently,the open-loop mechanism is efficiently closed by referencing the constraint equations presented in the appendix,alongside its elastostatic model.The proposed method proves to be both modeling and computationally efficient due to the comprehensive summary of the constraint equations in the Appendix,eliminating the need for additional equations.An example utilizing an over constrained subclosed loops demonstrate the application of the proposed method.In conclusion,the model proposed in this study enriches the theory of elastostatic stiffness modeling of PMs and provides an effective solution for stiffness modeling challenges they present.
基金supported by the National Natural Science Foundation of China(70971103)the Specialized Research Fund for the Doctora Program of Higher Education(20120143110001)
文摘Firstly, the research progress of grey model GM (1,1) is summarized, which is divided into three development stages: assimilation, alienation and melting stages. Then, the matrix analysis theory is used to study the modeling mechanism of GM (1,1), which decomposes the modeling data matrix into raw data transformation matrix, accumulated generating operation matrix and background value selection matrix. The changes of these three matrices are the essential reasons affecting the modeling and the accuracy of GM (1,1). Finally, the paper proposes a generalization grey model GGM (1,1), which is a extended form of GM (1,1) and also a unified form of model GM (1,1), model GM (1,1,α), stage grey model, hopping grey model, generalized accumulated model, strengthening operator model, weakening operator model and unequal interval model. And the theory and practical significance of the extended model is analyzed.
文摘Much research has been devoted to examination of the financial easing policy of the European Central Bank(ECB).However,this study is one of the first to use a dynamic micro-founded model to investigate empirically the impact of the ECB’s Quantitative Easing(QE)policy on consumption and investment by economic agents in Italy(households,government,firms,and the rest of the world).For this purpose,we constructed a Financial Social Accounting Matrix(FSAM)for the Italian economy for the year 2009 to calibrate a dynamic computable general equilibrium model(DCGE).This model allowed us to evaluate the direct and indirect impact of money flow on the behavior of consumption and investment.The findings of the study confirmed the positive impact of the ECB’s monetary policy on the level of investment and consumption.
基金Supported by the National Natural Science Foundation of China(60874084)the Academy of Finland(135225,127299)
文摘The issue of the stability and controller design of Takagi-Sugeno(T-S) fuzzy control systems with time-delay is investigated under imperfect premise matching when the T-S fuzzy time-delay model and fuzzy controller do not share the same membership functions.A new stability criterion which contains the information of membership functions is derived.The new stability criterion is less conservative,and enhances the design flexibility.Two numerical examples are presented to illustrate the conservativeness and effectiveness of the proposed method.
基金supported in part by the National Natural Science Foundation of China (6177249391646114)+1 种基金Chongqing research program of technology innovation and application (cstc2017rgzn-zdyfX0020)in part by the Pioneer Hundred Talents Program of Chinese Academy of Sciences
文摘Latent factor(LF) models are highly effective in extracting useful knowledge from High-Dimensional and Sparse(HiDS) matrices which are commonly seen in various industrial applications. An LF model usually adopts iterative optimizers,which may consume many iterations to achieve a local optima,resulting in considerable time cost. Hence, determining how to accelerate the training process for LF models has become a significant issue. To address this, this work proposes a randomized latent factor(RLF) model. It incorporates the principle of randomized learning techniques from neural networks into the LF analysis of HiDS matrices, thereby greatly alleviating computational burden. It also extends a standard learning process for randomized neural networks in context of LF analysis to make the resulting model represent an HiDS matrix correctly.Experimental results on three HiDS matrices from industrial applications demonstrate that compared with state-of-the-art LF models, RLF is able to achieve significantly higher computational efficiency and comparable prediction accuracy for missing data.I provides an important alternative approach to LF analysis of HiDS matrices, which is especially desired for industrial applications demanding highly efficient models.
文摘Short-leg shear wall structures are a new form of building structure that combine the merits of both frame and shear wall structures. Its architectural features, structure bearing and engineering cost are reasonable. To analyze the elastic-plastic response of a short-leg shear wall structure during an earthquake, this study modified the multiple-vertical-rod element model of the shear wall, considered the shear lag effect and proposed a multiple-vertical-rod element coupling beam model with a new local stiffness domain. Based on the principle of minimum potential energy and the variational principle, the stiffness matrixes of a short-leg shear wall and a coupling beam are derived in this study. Furthermore, the bending shear correlation for the analysis of different parameters to describe the structure, such as the beam height to span ratio, short-leg shear wall height to thickness ratio, and steel ratio are introduced. The results show that the height to span ratio directly affects the structural integrity; and the short-leg shear wall height to thickness ratio should be limited to a range of approximately 6.0 to 7.0. The design of short-leg shear walls should be in accordance with the "strong wall and weak beam" principle.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.N2403006)the National Science and Technology Major Project,China(Grant No.J2019-I-0008-0008).
文摘The efficient dynamic modeling and vibration transfer analysis of a fluid-delivering branch pipeline(FDBP)are essential for analyzing vibration coupling effects and implementing vibration reduction optimization.Therefore,this study proposes a reduced-order dynamic modeling method suitable for FDBPs and then analyzes the vibration transfer characteristics.For the modeling method,the finite element method and absorbing transfer matrix method(ATMM)are integrated,considering the fluid–structure coupling effect and fluid disturbances.The dual-domain dynamic substructure method is developed to perform the reduced-order modeling of FDBP,and ATMM is adopted to reduce the matrix order when solving fluid disturbances.Furthermore,the modeling method is validated by experiments on an H-shaped branch pipeline.Finally,transient and steady-state vibration transfer analyses of FDBP are performed,and the effects of branch locations on natural characteristics and vibration transfer behavior are analyzed.Results show that transient vibration transfer represents the transfer and conversion of the kinematic,strain,and damping energies,while steady-state vibration transfer characteristics are related to the vibration mode.In addition,multiple-order mode exchanges are triggered when branch locations vary in frequency-shift regions,and the mode-exchange regions are also the transformation ones for vibration transfer patterns.
文摘In order to estimate the most effect stage and process on population growth and effective conserve the rare endangered plant Davidia involucrata, we analyzed the dynamics and the contributions of life-history components on population dynamics based on Lefkovitch matrix model and sensitivity analysis. The life cycle of Davidia involucrata was divided into six stages (seed, seedling, juvenile, immature, early adult and late adult) based on the species characteristics and published literature data, the survival rates in each life-history stage were simulated using a static life table, and the fecundity of each stage was determined according to sample information. The results showed that the structure of the observed population was not ideal, and the numbers of seedlings and coppice shoots was similar. The population growth rate was influenced largely by individual growth process, and asexual reproduction made a larger contribution to population growth than sexual reproduction. However, sexual reproduction was more important than asexual reproduction, because most asexual reproducing individuals (the coppice shoots) were derived mainly from human destruction (e.g. felling trees). The most important stage was stage V (late adult), associated with seed production and germination. Therefore, conservation of Davidia involucrata populations should focus on stage V and sexual reproduction, in order to improve the seed production and germination rate, and to promote population stability and development.
文摘In this paper, a new mathematical form, matrix, continued fraction (MCF) is introduced to describe the decay of effects of an equilibrant system of forces acting on a sphere of an elastic body. By this way, the famous Saint-Venant's principle is proved often but not always valid in computational mechanics.
文摘We investigate the structure of a large precision matrix in Gaussian graphical models by decomposing it into a low rank component and a remainder part with sparse precision matrix.Based on the decomposition,we propose to estimate the large precision matrix by inverting a principal orthogonal decomposition(IPOD).The IPOD approach has appealing practical interpretations in conditional graphical models given the low rank component,and it connects to Gaussian graphical models with latent variables.Specifically,we show that the low rank component in the decomposition of the large precision matrix can be viewed as the contribution from the latent variables in a Gaussian graphical model.Compared with existing approaches for latent variable graphical models,the IPOD is conveniently feasible in practice where only inverting a low-dimensional matrix is required.To identify the number of latent variables,which is an objective of its own interest,we investigate and justify an approach by examining the ratios of adjacent eigenvalues of the sample covariance matrix?Theoretical properties,numerical examples,and a real data application demonstrate the merits of the IPOD approach in its convenience,performance,and interpretability.
文摘Traffic information is so far less than the number of OD variables, that it is difficult to obtain the satisfactory solution. In this paper, a method based on Quantum behaved Particle Swarm Optimization (QPSO) algorithm is developed to obtain the global optimal solution. It designs the method based on QPSO algorithm to solve the OD matrix prediction model, lists the detailed steps and points out how to choose the PSO operator. Moreover, it uses MATLAB program-ming language to carry out the simulation test. The simulation results show that the method has higher efficiency and accuracy.
基金financially supported by the National Natural Science Foundation of China(No.41573130)BNU Interdisciplinary Research Foundation for First-Year Doctoral Candidates(No.BNUXKJC1802)
文摘Simulated photo-degradation of fluorescent dissolved organic matter(FDOM) in Lake Baihua(BH) and Lake Hongfeng(HF) was investigated with three-dimensional excitationemission matrix(3 DEEM) fluorescence combined with the fluorescence regional integration(FRI),parallel factor(PARAFAC) analysis,and multi-order kinetic models.In the FRI analysis,fulvic-like and humic-like materials were the main constituents for both BH-FDOM and HF-FDOM.Four individual components were identified by use of PARAFAC analysis as humic-like components(C1),fulvic-like components(C2),protein-like components(C3) and unidentified components(C4).The maximum 3 DEEM fluorescence intensity of PARAFAC components C1-C3 decreased by about 60%,70% and 90%,respectively after photo-degradation.The multi-order kinetic model was acceptable to represent the photo-degradation of FDOM with correlation coefficient(Radj2)(0.963-0.998).The photo-degradation rate constants(kn) showed differences of three orders of magnitude,from 1.09 × 10-6 to 4.02 × 10-4 min-1,and half-life of multi-order model(T1/2n)ranged from 5.26 to 64.01 min.The decreased values of fluorescence index(FI) and biogenic index(BI),the fact that of percent fluorescence response parameter of Region I(PⅠ,n) showed the greatest change ratio,followed by percent fluorescence response parameter of Region II(PⅡ,n,while the largest decrease ratio was found for C3 components,and the lowest T1/2n was observed for C3,indicated preferential degradation of protein-like materials/components derived from biological sources during photodegradation.This research on the degradation of FDOM by 3 DEEM/FRI-PARAFAC would be beneficial to understanding the photo-degradation of FD OM in natural environments and accurately predicting the environmental behaviors of contaminants in the presence of FDOM.