Background:Structured vigorous physical activity(VPA)can improve cognitive control in children,but studies relating daily physical activity(PA)to cognitive control have yielded conflicting findings.While objectively m...Background:Structured vigorous physical activity(VPA)can improve cognitive control in children,but studies relating daily physical activity(PA)to cognitive control have yielded conflicting findings.While objectively measured daily PA summarizes all occurrences of PA within a registered period,a minimum duration of continuous PA is required for registration of a PA bout.Because brief bouts of high-intensity PA can account for a large proportion of children’s daily activity-related energy expenditure,this study assessed whether daily and bouted VPA were selectively related to cognitive control in preadolescents relative to other PA intensities.Methods:A total of 75 children between the ages of 8 and 10 years(49%girls)wore an ActiGraph wGT 3 X+on the hip for 7 days.The acceleration signal from the vertical axis was summarized over 1 s,5 s,and 15 s epochs.Daily and boutecd modercate PA,moderate-to-vigorous PA,and VPA were measured.PA bouts were expressed as the frequency and time spent in 2 different continuous PA bouts,one lasting≥10 s and the other lasting≥30 s at a given intensity.Inhibitory control was assessed using behavioral responses to a modified flanker task(mean reaction time(RTmean)and accuracy).Attentional resource allocation and co gnitive processing speed were measured using the amplitude and latency of the P3 component of event-related brain potentials,respectively.Associations between PA,behavioral indices of inhibitory control,P3 amplitude,and latency were assessed using hierarchical regression models.Results:Daily VPA was not related to RTmean or accuracy on either congruent or incongruent trials.In contrast,more time spent in VPA bouts lasting≥30 s predicted shorter P3 latency across epochs and flanker congruencies(allβ≤-0.24,all p≤0.04).The associations between shorter P3 latency and the time spent in moderate-to-vigorous PA bouts lasting≥30 s were less consistent and largely limited to congruent trials(congruent:β(-0.3 1,-0.34)).No significant associations were observed upon correction for false discovery rate.Conclusion:The pattern of uncorrected associations aligns with the dose-response literature and suggests that brief VPA bouts may yield the greatest benefits to cognitive processing speed in preadolescents.Future studies using measures of brain structure and function are needed to understand the mechanisms linking bouted VPA to neurocognitive function during childhood.展开更多
基金funded in part by National Institute of Child Health and Human Development (NICHD RO1 HD069381) (to CHH and AFK)National Institute of Food and Agriculture, U.S. Department of Agriculture (2011-67001-30101)University of Illinois at Urbana-Champaign and Abbott Nutrition through the Center for Nutrition, Learning, and Memory (ANGC1204) (to CHH and NAK)
文摘Background:Structured vigorous physical activity(VPA)can improve cognitive control in children,but studies relating daily physical activity(PA)to cognitive control have yielded conflicting findings.While objectively measured daily PA summarizes all occurrences of PA within a registered period,a minimum duration of continuous PA is required for registration of a PA bout.Because brief bouts of high-intensity PA can account for a large proportion of children’s daily activity-related energy expenditure,this study assessed whether daily and bouted VPA were selectively related to cognitive control in preadolescents relative to other PA intensities.Methods:A total of 75 children between the ages of 8 and 10 years(49%girls)wore an ActiGraph wGT 3 X+on the hip for 7 days.The acceleration signal from the vertical axis was summarized over 1 s,5 s,and 15 s epochs.Daily and boutecd modercate PA,moderate-to-vigorous PA,and VPA were measured.PA bouts were expressed as the frequency and time spent in 2 different continuous PA bouts,one lasting≥10 s and the other lasting≥30 s at a given intensity.Inhibitory control was assessed using behavioral responses to a modified flanker task(mean reaction time(RTmean)and accuracy).Attentional resource allocation and co gnitive processing speed were measured using the amplitude and latency of the P3 component of event-related brain potentials,respectively.Associations between PA,behavioral indices of inhibitory control,P3 amplitude,and latency were assessed using hierarchical regression models.Results:Daily VPA was not related to RTmean or accuracy on either congruent or incongruent trials.In contrast,more time spent in VPA bouts lasting≥30 s predicted shorter P3 latency across epochs and flanker congruencies(allβ≤-0.24,all p≤0.04).The associations between shorter P3 latency and the time spent in moderate-to-vigorous PA bouts lasting≥30 s were less consistent and largely limited to congruent trials(congruent:β(-0.3 1,-0.34)).No significant associations were observed upon correction for false discovery rate.Conclusion:The pattern of uncorrected associations aligns with the dose-response literature and suggests that brief VPA bouts may yield the greatest benefits to cognitive processing speed in preadolescents.Future studies using measures of brain structure and function are needed to understand the mechanisms linking bouted VPA to neurocognitive function during childhood.