In this paper, a new class of generalized nonlinear implicit quasivariational inclusions involving a set-valued maximal monotone wrapping are studied. A existence theorem of solutions for this class of generalized non...In this paper, a new class of generalized nonlinear implicit quasivariational inclusions involving a set-valued maximal monotone wrapping are studied. A existence theorem of solutions for this class of generalized nonlinear implicit quasivariational inclusions is Proved without compactness assumptions. A new iterative algorithm for finding approximate solutions of the generalized nonlinear implicit quasivariational inclusions is suggested and analysed and the convergence of iterative sequence generated by the new algorithm is also given, As special cases, some known results in this field are also discussed.展开更多
In this paper, we study some new systems of generalized quasi-variational inclusion problems in FC-spaces without convexity structure.By applying an existence theorem of maximal elements of set-valued mappings due to ...In this paper, we study some new systems of generalized quasi-variational inclusion problems in FC-spaces without convexity structure.By applying an existence theorem of maximal elements of set-valued mappings due to the author, some new existence theorems of solutions for the systems of generalized quasi-variational inclusion problems are proved in noncompact FC-spaces. As applications, some existence results of solutions for the system of quasi-optimization problems and mathematical programs with the systems of generalized quasi-variational inclusion constraints are obtained in FC-spaces.展开更多
A new system of general nonlinear variational inclusions is introduced and studied in Banach spaces. An iterative algorithm is developed and analyzed by use of the resolvent operator techniques to find the approximate...A new system of general nonlinear variational inclusions is introduced and studied in Banach spaces. An iterative algorithm is developed and analyzed by use of the resolvent operator techniques to find the approximate solutions of the system of general nonlinear variational inclusions involving different nonlinear operators in uniformly smooth Banach spaces.展开更多
In this paper, we introduce and study a new system of generalized vari- ational inclusions involving H-η-monotone operators in uniformly smooth Banach spaces. Using the resolvent operator technique associated with H-...In this paper, we introduce and study a new system of generalized vari- ational inclusions involving H-η-monotone operators in uniformly smooth Banach spaces. Using the resolvent operator technique associated with H-η-monotone opera- tors, we prove the approximation solvability of solutions using an iterative algorithm. The results in this paper extend and improve some known results from the literature.展开更多
A class of generalized implicit quasivariational inclusions with fuzzy mappings in Hilbert space is discussed in this paper which proves an existence theorem of the solutions and proposes a new iterative algorithm and...A class of generalized implicit quasivariational inclusions with fuzzy mappings in Hilbert space is discussed in this paper which proves an existence theorem of the solutions and proposes a new iterative algorithm and the convergence of the iterative sequence generated by the new algorithm. These results extend and improve some recent corresponding achievements.展开更多
In this paper, we introduce some new systems of generalized vector quasi-variational inclusion problems and system of generalized vector ideal (resp., proper, Pareto, weak) quasi-optimization problems in locally FC-...In this paper, we introduce some new systems of generalized vector quasi-variational inclusion problems and system of generalized vector ideal (resp., proper, Pareto, weak) quasi-optimization problems in locally FC-uniform spaces without convexity structure. By using the KKM type theorem and Himmelberg type fixed point theorem proposed by the author, some new existence theorems of solutions for the systems of generalized vector quasi-variational inclusion problems are proved. As to its applications, we obtain some existence results of solutions for systems of generalized vector quasi-optimization problems.展开更多
In this paper, a class of generalized strongly nonlinear quasivariational inclusions are studied. By using the properties of the resolvent operator associated with a maximal monotone; mapping in Hilbert space, an exis...In this paper, a class of generalized strongly nonlinear quasivariational inclusions are studied. By using the properties of the resolvent operator associated with a maximal monotone; mapping in Hilbert space, an existence theorem of solutions for generalized strongly nonlinear quasivariational inclusion is established and a new proximal point algorithm with errors is suggested for finding approximate solutions which strongly converge to the exact solution of the generalized strongly, nonlinear quasivariational inclusion. As special cases, some known results in this field are also discussed.展开更多
Naturally curved and twisted closed thin-walled slender beams of composite material undergoing small strains, large displacements and rotations have been investigated, and an incomplete generalized variational functio...Naturally curved and twisted closed thin-walled slender beams of composite material undergoing small strains, large displacements and rotations have been investigated, and an incomplete generalized variational function on theory of elasticity with finite displacement is established far these beams with complete constrained boundaries at two ends. The balance equations as well as all boundary conditions concerned have been deduced from functional stationary value condition. The above-mentioned method can also be extended to other various incomplete constrained boundaries conveniently. In addition, the fundamental equations and concerned formulas in the small displacement theory of the beams can be derived by using above results.展开更多
Concerned with the existence and convergence properties of approximate solution to multivalued nonlinear mixed variational inclusion problem in a Hilbert space, we established the equivalence between the variational i...Concerned with the existence and convergence properties of approximate solution to multivalued nonlinear mixed variational inclusion problem in a Hilbert space, we established the equivalence between the variational inclusion and the general resolvent equations, obtained three iterative algorithms, provided the convergence analysis of the algorithms. The results obtained improve and generalize a number of resent results.展开更多
This paper discusses the generalized variational principles founded by the technique of Lagrangian multipliers in structural mechanics and analyzes the nonlinear statically indeterminate structures. It is assumed that...This paper discusses the generalized variational principles founded by the technique of Lagrangian multipliers in structural mechanics and analyzes the nonlinear statically indeterminate structures. It is assumed that the stress-strain relationship of the materials of structures has the form of namely, the physical equations of structures have the shape of exponential functions. Several examples are given to illustrate the statically indeterminate structures such as the trusses, beams, frames and torsional bars.展开更多
By applying an existence theorem of maximal elements of set-valued mappings in FC-spaces proposed by the author, some new existence theorems of solutions for systems of generalized quasi-variational inclusion (disclu...By applying an existence theorem of maximal elements of set-valued mappings in FC-spaces proposed by the author, some new existence theorems of solutions for systems of generalized quasi-variational inclusion (disclusion) problems are proved in FC-spaces without convexity structures. These results improve and generalize some results in recent publications from closed convex subsets of topological vector spaces to FC-spaces under weaker conditions.展开更多
In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseu...In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseudo-contractive mappings, and the set of solutions of the variational inclusion problem with multi-valued maximal monotone mappings and inverse-strongly monotone mappings in Hilbert space. Under suitable conditions, some strong convergence theorems are proved. Our results extends the recent results in G.L.Acedo and H.K.Xu [2], Zhang, Lee and Chan [8], Wakahashi and Toyoda [9], Takahashi and Takahashi [I0] and S. S. Chang, H. W. Joseph Lee and C. K. Chan [II], S.Takahashi and W.Takahashi [12]. Moreover, the method of proof adopted in this article is different from those of [4] and [12].展开更多
In this paper, a new notion of a generalized H-η-accretive operator is introduced and studied, which provides a unifying framework for the generalized m-accretive operator and the H-η-monotone operator in Banach spa...In this paper, a new notion of a generalized H-η-accretive operator is introduced and studied, which provides a unifying framework for the generalized m-accretive operator and the H-η-monotone operator in Banach spaces. A resolvent operator associated with the generalized H-η-accretive operator is defined, and its Lipschitz continuity is shown. As an application, the solvability for a class of variational inclusions involving the generalized H-η-accretive operators in Banach spaces is considered. By using the technique of the resolvent mapping, an iterative algorithm for solving the variational inclusion in Banach spaces is constructed. Under some suitable conditions, it is proven that the solution for the variational inclusion and the convergence of the iterative sequence generated by the algorithm exist.展开更多
In this paper, we posed a random iterative algorithm for generalized multivalued random variational like inclusions. We define the random relaxed Lipschitz and relaxed monotone mappings and prove the existence and con...In this paper, we posed a random iterative algorithm for generalized multivalued random variational like inclusions. We define the random relaxed Lipschitz and relaxed monotone mappings and prove the existence and convergence of solutions of the random iterative sequences generated by a random iterative algorithm.展开更多
The sensitivity analysis for a class of generalized set-valued quasi-variational inclusion problems is investigated in the setting of Banach spaces. By using the resolvent operator technique, without assuming the diff...The sensitivity analysis for a class of generalized set-valued quasi-variational inclusion problems is investigated in the setting of Banach spaces. By using the resolvent operator technique, without assuming the differentiability and monotonicity of the given data, equivalence of these problems to the class of generalized resolvent equations is established.展开更多
In this paper, the author studies a class of mixed nonlinear variational-like inequalities in reflexive Banach space. By applying a minimax inequality obtained by the author, some existence uniqueness theorems of solu...In this paper, the author studies a class of mixed nonlinear variational-like inequalities in reflexive Banach space. By applying a minimax inequality obtained by the author, some existence uniqueness theorems of solutions for the mixed nonlinear variational-like inequalities are proved. Next, by applying the auxiliary problem technique, rite author suggests an innovative iterative algorithm to compute the approximate solutions of the mixed nonlinear variational-like inequalities. Finally, the convergence criteria is also discussed.展开更多
A new class of g-η-monotone mappings and a class of generalized implicit variational-like inclusions involving g-η-monotone mappings are introduced. The resolvent operator of g-η-monotone mappings is defined and it...A new class of g-η-monotone mappings and a class of generalized implicit variational-like inclusions involving g-η-monotone mappings are introduced. The resolvent operator of g-η-monotone mappings is defined and its Lipschitz continuity is presented, An iterative algorithm for approximating the solutions of generalized implicit wriational- like inclusions is suggested and analyzed. The convergence of iterative sequences generated by the algorithm is also proved,展开更多
This paper deals with a new class of nonlinear set valued implicit variational inclusion problems involving (A, η)-monotone mappings in 2-uniformly smooth Banach spaces. Semi-inner product structure has been used t...This paper deals with a new class of nonlinear set valued implicit variational inclusion problems involving (A, η)-monotone mappings in 2-uniformly smooth Banach spaces. Semi-inner product structure has been used to study the (A, η)-monotonicity. Using the generalized resolvent operator technique and the semi-inner product structure, the approximation solvability of the proposed problem is investigated. An iterative algorithm is constructed to approximate the solution of the problem. Convergence analysis of the proposed algorithm is investigated. Similar results are also investigated for variational inclusion problems involving (H, η)-monotone mappings.展开更多
A new system of generalized nonlinear variational-like inclusions involving A- maximal m-relaxed η-accretive (so-called, (A, η)-accretive in [36]) mappings in q-uniformly smooth Banach spaces is introduced, and ...A new system of generalized nonlinear variational-like inclusions involving A- maximal m-relaxed η-accretive (so-called, (A, η)-accretive in [36]) mappings in q-uniformly smooth Banach spaces is introduced, and then, by using the resolvent operator technique associated with A-maximal m-relaxed ~/-accretive mappings due to Lan et al., the exis- tence and uniqueness of a solution to the aforementioned system is established. Applying two nearly uniformly Lipschitzian mappings 81 and 82 and using the resolvent operator technique associated with A-maximal m-relaxed ~?-accretive mappings, we shall construct a new perturbed N-step iterative algorithm with mixed errors for finding an element of the set of the fixed points of the nearly uniformly Lipschitzian mapping Q = (S1, S2) which is the unique solution of the aforesaid system. We also prove the convergence and stability of the iterative sequence generated by the suggested perturbed iterative algorithm under some suitable conditions, The results presented in this paper extend and improve some known results in the literature.展开更多
The purpose of this paper is to find the solutions to the quadratic mini- mization problem by using the resolvent approach. Under suitable conditions, some new strong convergence theorems are proved for approximating ...The purpose of this paper is to find the solutions to the quadratic mini- mization problem by using the resolvent approach. Under suitable conditions, some new strong convergence theorems are proved for approximating a solution of the above min- imization problem. The results presented in the paper extend and improve some recent results.展开更多
文摘In this paper, a new class of generalized nonlinear implicit quasivariational inclusions involving a set-valued maximal monotone wrapping are studied. A existence theorem of solutions for this class of generalized nonlinear implicit quasivariational inclusions is Proved without compactness assumptions. A new iterative algorithm for finding approximate solutions of the generalized nonlinear implicit quasivariational inclusions is suggested and analysed and the convergence of iterative sequence generated by the new algorithm is also given, As special cases, some known results in this field are also discussed.
基金supported by the Scientific Research Fun of Sichuan Normal University(09ZDL04)the Sichuan Province Leading Academic Discipline Project(SZD0406)
文摘In this paper, we study some new systems of generalized quasi-variational inclusion problems in FC-spaces without convexity structure.By applying an existence theorem of maximal elements of set-valued mappings due to the author, some new existence theorems of solutions for the systems of generalized quasi-variational inclusion problems are proved in noncompact FC-spaces. As applications, some existence results of solutions for the system of quasi-optimization problems and mathematical programs with the systems of generalized quasi-variational inclusion constraints are obtained in FC-spaces.
基金supported by the Scientific Research Fund of Sichuan Normal University(No.11ZDL01)the Sichuan Province Leading Academic Discipline Project(No.SZD0406)
文摘A new system of general nonlinear variational inclusions is introduced and studied in Banach spaces. An iterative algorithm is developed and analyzed by use of the resolvent operator techniques to find the approximate solutions of the system of general nonlinear variational inclusions involving different nonlinear operators in uniformly smooth Banach spaces.
基金The NSF(60804065)of Chinathe Foundation(11A028)of China West Normal University
文摘In this paper, we introduce and study a new system of generalized vari- ational inclusions involving H-η-monotone operators in uniformly smooth Banach spaces. Using the resolvent operator technique associated with H-η-monotone opera- tors, we prove the approximation solvability of solutions using an iterative algorithm. The results in this paper extend and improve some known results from the literature.
基金Funded by Excellent youth Teacher Foundation of Chongqing Municipal Education Commission (D2005-37).
文摘A class of generalized implicit quasivariational inclusions with fuzzy mappings in Hilbert space is discussed in this paper which proves an existence theorem of the solutions and proposes a new iterative algorithm and the convergence of the iterative sequence generated by the new algorithm. These results extend and improve some recent corresponding achievements.
基金supported by the Natural Science Foundation of Sichuan Education Department of China(No. 07ZA092)the Sichuan Province Leading Academic Discipline Project (No. SZD0406)
文摘In this paper, we introduce some new systems of generalized vector quasi-variational inclusion problems and system of generalized vector ideal (resp., proper, Pareto, weak) quasi-optimization problems in locally FC-uniform spaces without convexity structure. By using the KKM type theorem and Himmelberg type fixed point theorem proposed by the author, some new existence theorems of solutions for the systems of generalized vector quasi-variational inclusion problems are proved. As to its applications, we obtain some existence results of solutions for systems of generalized vector quasi-optimization problems.
文摘In this paper, a class of generalized strongly nonlinear quasivariational inclusions are studied. By using the properties of the resolvent operator associated with a maximal monotone; mapping in Hilbert space, an existence theorem of solutions for generalized strongly nonlinear quasivariational inclusion is established and a new proximal point algorithm with errors is suggested for finding approximate solutions which strongly converge to the exact solution of the generalized strongly, nonlinear quasivariational inclusion. As special cases, some known results in this field are also discussed.
文摘Naturally curved and twisted closed thin-walled slender beams of composite material undergoing small strains, large displacements and rotations have been investigated, and an incomplete generalized variational function on theory of elasticity with finite displacement is established far these beams with complete constrained boundaries at two ends. The balance equations as well as all boundary conditions concerned have been deduced from functional stationary value condition. The above-mentioned method can also be extended to other various incomplete constrained boundaries conveniently. In addition, the fundamental equations and concerned formulas in the small displacement theory of the beams can be derived by using above results.
文摘Concerned with the existence and convergence properties of approximate solution to multivalued nonlinear mixed variational inclusion problem in a Hilbert space, we established the equivalence between the variational inclusion and the general resolvent equations, obtained three iterative algorithms, provided the convergence analysis of the algorithms. The results obtained improve and generalize a number of resent results.
文摘This paper discusses the generalized variational principles founded by the technique of Lagrangian multipliers in structural mechanics and analyzes the nonlinear statically indeterminate structures. It is assumed that the stress-strain relationship of the materials of structures has the form of namely, the physical equations of structures have the shape of exponential functions. Several examples are given to illustrate the statically indeterminate structures such as the trusses, beams, frames and torsional bars.
基金Project supported by the Scientific Research Fund of Sichuan Normal University (No. 09ZDL04)the Sichuan Province Leading Academic Discipline Project (No. SZD0406)
文摘By applying an existence theorem of maximal elements of set-valued mappings in FC-spaces proposed by the author, some new existence theorems of solutions for systems of generalized quasi-variational inclusion (disclusion) problems are proved in FC-spaces without convexity structures. These results improve and generalize some results in recent publications from closed convex subsets of topological vector spaces to FC-spaces under weaker conditions.
基金supported by Scientific Research Fund of Sichuan Provincial Education Department (09ZB102)Scientific Research Fund of Science and Technology Deportment of Sichuan Provincial (2011JYZ011)
文摘In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseudo-contractive mappings, and the set of solutions of the variational inclusion problem with multi-valued maximal monotone mappings and inverse-strongly monotone mappings in Hilbert space. Under suitable conditions, some strong convergence theorems are proved. Our results extends the recent results in G.L.Acedo and H.K.Xu [2], Zhang, Lee and Chan [8], Wakahashi and Toyoda [9], Takahashi and Takahashi [I0] and S. S. Chang, H. W. Joseph Lee and C. K. Chan [II], S.Takahashi and W.Takahashi [12]. Moreover, the method of proof adopted in this article is different from those of [4] and [12].
基金Project supported by the National Natural Science Foundation of China (No. 10671135)the Key Program of the National Natural Science Foundation of China (No. 70831005)the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20060610005)
文摘In this paper, a new notion of a generalized H-η-accretive operator is introduced and studied, which provides a unifying framework for the generalized m-accretive operator and the H-η-monotone operator in Banach spaces. A resolvent operator associated with the generalized H-η-accretive operator is defined, and its Lipschitz continuity is shown. As an application, the solvability for a class of variational inclusions involving the generalized H-η-accretive operators in Banach spaces is considered. By using the technique of the resolvent mapping, an iterative algorithm for solving the variational inclusion in Banach spaces is constructed. Under some suitable conditions, it is proven that the solution for the variational inclusion and the convergence of the iterative sequence generated by the algorithm exist.
文摘In this paper, we posed a random iterative algorithm for generalized multivalued random variational like inclusions. We define the random relaxed Lipschitz and relaxed monotone mappings and prove the existence and convergence of solutions of the random iterative sequences generated by a random iterative algorithm.
基金Project supported by the Teaching and Research Award Fund for Outstanding Young Teachers in Higher Education Institutions of Ministry of Education, China (No.0705)the Dawn Program Fund of Shanghai of China (No.BL200404)Shanghai Leading Academic Discipline Project (No.T0401)
文摘The sensitivity analysis for a class of generalized set-valued quasi-variational inclusion problems is investigated in the setting of Banach spaces. By using the resolvent operator technique, without assuming the differentiability and monotonicity of the given data, equivalence of these problems to the class of generalized resolvent equations is established.
文摘In this paper, the author studies a class of mixed nonlinear variational-like inequalities in reflexive Banach space. By applying a minimax inequality obtained by the author, some existence uniqueness theorems of solutions for the mixed nonlinear variational-like inequalities are proved. Next, by applying the auxiliary problem technique, rite author suggests an innovative iterative algorithm to compute the approximate solutions of the mixed nonlinear variational-like inequalities. Finally, the convergence criteria is also discussed.
基金Project supported by the Key Science Foundation of Sichuan Education Department of China (No.2003A081)
文摘A new class of g-η-monotone mappings and a class of generalized implicit variational-like inclusions involving g-η-monotone mappings are introduced. The resolvent operator of g-η-monotone mappings is defined and its Lipschitz continuity is presented, An iterative algorithm for approximating the solutions of generalized implicit wriational- like inclusions is suggested and analyzed. The convergence of iterative sequences generated by the algorithm is also proved,
文摘This paper deals with a new class of nonlinear set valued implicit variational inclusion problems involving (A, η)-monotone mappings in 2-uniformly smooth Banach spaces. Semi-inner product structure has been used to study the (A, η)-monotonicity. Using the generalized resolvent operator technique and the semi-inner product structure, the approximation solvability of the proposed problem is investigated. An iterative algorithm is constructed to approximate the solution of the problem. Convergence analysis of the proposed algorithm is investigated. Similar results are also investigated for variational inclusion problems involving (H, η)-monotone mappings.
文摘A new system of generalized nonlinear variational-like inclusions involving A- maximal m-relaxed η-accretive (so-called, (A, η)-accretive in [36]) mappings in q-uniformly smooth Banach spaces is introduced, and then, by using the resolvent operator technique associated with A-maximal m-relaxed ~/-accretive mappings due to Lan et al., the exis- tence and uniqueness of a solution to the aforementioned system is established. Applying two nearly uniformly Lipschitzian mappings 81 and 82 and using the resolvent operator technique associated with A-maximal m-relaxed ~?-accretive mappings, we shall construct a new perturbed N-step iterative algorithm with mixed errors for finding an element of the set of the fixed points of the nearly uniformly Lipschitzian mapping Q = (S1, S2) which is the unique solution of the aforesaid system. We also prove the convergence and stability of the iterative sequence generated by the suggested perturbed iterative algorithm under some suitable conditions, The results presented in this paper extend and improve some known results in the literature.
基金supported by the Natural Science Foundation of Yibin University (No.2009-Z003)
文摘The purpose of this paper is to find the solutions to the quadratic mini- mization problem by using the resolvent approach. Under suitable conditions, some new strong convergence theorems are proved for approximating a solution of the above min- imization problem. The results presented in the paper extend and improve some recent results.