The damage identification is made by the numerical simulation analysis of a five-storey-and-two-span RC frame structure, using improved and unimproved direct analytical method respectively; and the fundamental equatio...The damage identification is made by the numerical simulation analysis of a five-storey-and-two-span RC frame structure, using improved and unimproved direct analytical method respectively; and the fundamental equations were solved by the minimal least square method (viz. general inverse method). It demonstrates that the feasibility and the accuracy of the present approach were impoved significantly, compared with the result of unimproved damage identification.展开更多
The primary objective of this paper is to develop output only modal identification and structural damage detection. Identification of multi-degree of freedom (MDOF) linear time invariant (LTI) and linear time vari...The primary objective of this paper is to develop output only modal identification and structural damage detection. Identification of multi-degree of freedom (MDOF) linear time invariant (LTI) and linear time variant (LTV--due to damage) systems based on Time-frequency (TF) techniques--such as short-time Fourier transform (STFT), empirical mode decomposition (EMD), and wavelets--is proposed. STFT, EMD, and wavelet methods developed to date are reviewed in detail. In addition a Hilbert transform (HT) approach to determine frequency and damping is also presented. In this paper, STFT, EMD, HT and wavelet techniques are developed for decomposition of free vibration response of MDOF systems into their modal components. Once the modal components are obtained, each one is processed using Hilbert transform to obtain the modal frequency and damping ratios. In addition, the ratio of modal components at different degrees of freedom facilitate determination of mode shape. In cases with output only modal identification using ambient/random response, the random decrement technique is used to obtain free vibration response. The advantage of TF techniques is that they arc signal based; hence, can be used for output only modal identification. A three degree of freedom 1:10 scale model test structure is used to validate the proposed output only modal identification techniques based on STFT, EMD, HT, wavelets. Both measured free vibration and forced vibration (white noise) response are considered. The secondary objective of this paper is to show the relative ease with which the TF techniques can be used for modal identification and their potential for real world applications where output only identification is essential. Recorded ambient vibration data processed using techniques such as the random decrement technique can be used to obtain the free vibration response, so that further processing using TF based modal identification can be performed.展开更多
Based on measured natural frequencies and acceleration responses,a non-probabilistic information fusion technique is proposed for the structural damage detection by adopting the set-membership identification(SMI) an...Based on measured natural frequencies and acceleration responses,a non-probabilistic information fusion technique is proposed for the structural damage detection by adopting the set-membership identification(SMI) and twostep model updating procedure.Due to the insufficiency and uncertainty of information obtained from measurements,the uncertain problem of damage identification is addressed with interval variables in this paper.Based on the first-order Taylor series expansion,the interval bounds of the elemental stiffness parameters in undamaged and damaged models are estimated,respectively.The possibility of damage existence(PoDE) in elements is proposed as the quantitative measure of structural damage probability,which is more reasonable in the condition of insufficient measurement data.In comparison with the identification method based on a single kind of information,the SMI method will improve the accuracy in damage identification,which reflects the information fusion concept based on the non-probabilistic set.A numerical example is performed to demonstrate the feasibility and effectiveness of the proposed technique.展开更多
This paper discusses the damage identification in the mooring line system of a floating wind turbine(FWT)exposed to various environmental loads.The proposed method incorporates a non-probabilistic method into artifici...This paper discusses the damage identification in the mooring line system of a floating wind turbine(FWT)exposed to various environmental loads.The proposed method incorporates a non-probabilistic method into artificial neural networks(ANNs).The non-probabilistic method is used to overcome the problem of uncertainties.For this purpose,the interval analysis method is used to calculate the lower and upper bounds of ANNs input data.This data contains some of the natural frequencies utilized to train two different ANNs and predict the output data which is the interval bounds of mooring line stiffness.Additionally,in order to reduce computational time and more importantly,identify damage in various conditions,the proposed method is trained using constant loads(CL)case(deterministic loads,including constant wind speed and airy wave model)and is tested using random loads(RL)case(including Kaimal wind model and JONSWAP wave theory).The superiority of this method is assessed by applying the deterministic method for damage identification.The results demonstrate that the proposed non-probabilistic method identifies the location and severity of damage more accurately compared to a deterministic one.This superiority is getting more remarkable as the difference in uncertainty levels between training and testing data is increasing.展开更多
A new method for structural physical parameter identification is proposed for linear structure.Firstly,a linear structural identification model was obtained based on a series of transformation of the dynamic character...A new method for structural physical parameter identification is proposed for linear structure.Firstly,a linear structural identification model was obtained based on a series of transformation of the dynamic characteristic equation.Then the posterior distribution of the model is obtained by the Bayesian updating theory.Using the structural modal parameters and considering their randomness,the structural stiffness parameter is obtained from the conditional posterior distribution of the linear structural identification model.The Gibbs sampling based on the Markov Chain Monte Carlo(MCMC)method is employed during the process.In order to illustrate the proposed method,a 3-DOF linear shear building is used as an example to detect and quantify its damage based on model data measured before and after a severe loading event.The research shows that damage level and locations can be identified with little error by using proposed method.展开更多
Single-layer reticulated shells(SLRSs)find widespread application in the roofs of crucial public structures,such as gymnasiums and exhibition center.In this paper,a new neural-network-based method for structural damag...Single-layer reticulated shells(SLRSs)find widespread application in the roofs of crucial public structures,such as gymnasiums and exhibition center.In this paper,a new neural-network-based method for structural damage identification in SLRSs is proposed.First,a damage vector index,NDL,that is related only to the damage localization,is proposed for SLRSs,and a damage data set is constructed from NDL data.On the basis of visualization of the NDL damage data set,the structural damaged region locations are identified using convolutional neural networks(CNNs).By cross-dividing the damaged region locations and using parallel CNNs for each regional location,the damaged region locations can be quickly and efficiently identified and the undamaged region locations can be eliminated.Second,a damage vector index,DS,that is related to the damage location and damage degree,is proposed for SLRSs.Based on the damaged region identified previously,a fully connected neural network(FCNN)is constructed to identify the location and damage degree of members.The effectiveness and reliability of the proposed method are verified by considering a numerical case of a spherical SLRS.The calculation results showed that the proposed method can quickly eliminate candidate locations of potential damaged region locations and precisely determine the location and damage degree of members.展开更多
The structural damage identification through modal data often leads to solving a set of linear equations. Special numerical treatment is sometimes required for an accurate and stable solution owing to the ill conditio...The structural damage identification through modal data often leads to solving a set of linear equations. Special numerical treatment is sometimes required for an accurate and stable solution owing to the ill conditioning of the equations. Based on the singular value decomposition (SVD) of the coefficient matrix, an error based truncation algorithm is proposed in this paper. By rejection of selected small singular values, the influence of noise can be reduced. A simply-supported beam is used as a simulation example to compare the results to other methods. Illustrative numerical examples demonstrate the good efficiency and stability of the algorithm in the nondestructive identification of structural damage through modal data.展开更多
文摘The damage identification is made by the numerical simulation analysis of a five-storey-and-two-span RC frame structure, using improved and unimproved direct analytical method respectively; and the fundamental equations were solved by the minimal least square method (viz. general inverse method). It demonstrates that the feasibility and the accuracy of the present approach were impoved significantly, compared with the result of unimproved damage identification.
基金National Science Foundation Grant NSF CMS CAREER Under Grant No.9996290NSF CMMI Under Grant No.0830391
文摘The primary objective of this paper is to develop output only modal identification and structural damage detection. Identification of multi-degree of freedom (MDOF) linear time invariant (LTI) and linear time variant (LTV--due to damage) systems based on Time-frequency (TF) techniques--such as short-time Fourier transform (STFT), empirical mode decomposition (EMD), and wavelets--is proposed. STFT, EMD, and wavelet methods developed to date are reviewed in detail. In addition a Hilbert transform (HT) approach to determine frequency and damping is also presented. In this paper, STFT, EMD, HT and wavelet techniques are developed for decomposition of free vibration response of MDOF systems into their modal components. Once the modal components are obtained, each one is processed using Hilbert transform to obtain the modal frequency and damping ratios. In addition, the ratio of modal components at different degrees of freedom facilitate determination of mode shape. In cases with output only modal identification using ambient/random response, the random decrement technique is used to obtain free vibration response. The advantage of TF techniques is that they arc signal based; hence, can be used for output only modal identification. A three degree of freedom 1:10 scale model test structure is used to validate the proposed output only modal identification techniques based on STFT, EMD, HT, wavelets. Both measured free vibration and forced vibration (white noise) response are considered. The secondary objective of this paper is to show the relative ease with which the TF techniques can be used for modal identification and their potential for real world applications where output only identification is essential. Recorded ambient vibration data processed using techniques such as the random decrement technique can be used to obtain the free vibration response, so that further processing using TF based modal identification can be performed.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education (20091102120023)the Aeronautical Science Foundation of China (2012ZA51010)+1 种基金the National Natural Science Foundation of China (11002013)Defense Industrial Technology Development Program (A2120110001 and B2120110011)
文摘Based on measured natural frequencies and acceleration responses,a non-probabilistic information fusion technique is proposed for the structural damage detection by adopting the set-membership identification(SMI) and twostep model updating procedure.Due to the insufficiency and uncertainty of information obtained from measurements,the uncertain problem of damage identification is addressed with interval variables in this paper.Based on the first-order Taylor series expansion,the interval bounds of the elemental stiffness parameters in undamaged and damaged models are estimated,respectively.The possibility of damage existence(PoDE) in elements is proposed as the quantitative measure of structural damage probability,which is more reasonable in the condition of insufficient measurement data.In comparison with the identification method based on a single kind of information,the SMI method will improve the accuracy in damage identification,which reflects the information fusion concept based on the non-probabilistic set.A numerical example is performed to demonstrate the feasibility and effectiveness of the proposed technique.
文摘This paper discusses the damage identification in the mooring line system of a floating wind turbine(FWT)exposed to various environmental loads.The proposed method incorporates a non-probabilistic method into artificial neural networks(ANNs).The non-probabilistic method is used to overcome the problem of uncertainties.For this purpose,the interval analysis method is used to calculate the lower and upper bounds of ANNs input data.This data contains some of the natural frequencies utilized to train two different ANNs and predict the output data which is the interval bounds of mooring line stiffness.Additionally,in order to reduce computational time and more importantly,identify damage in various conditions,the proposed method is trained using constant loads(CL)case(deterministic loads,including constant wind speed and airy wave model)and is tested using random loads(RL)case(including Kaimal wind model and JONSWAP wave theory).The superiority of this method is assessed by applying the deterministic method for damage identification.The results demonstrate that the proposed non-probabilistic method identifies the location and severity of damage more accurately compared to a deterministic one.This superiority is getting more remarkable as the difference in uncertainty levels between training and testing data is increasing.
文摘A new method for structural physical parameter identification is proposed for linear structure.Firstly,a linear structural identification model was obtained based on a series of transformation of the dynamic characteristic equation.Then the posterior distribution of the model is obtained by the Bayesian updating theory.Using the structural modal parameters and considering their randomness,the structural stiffness parameter is obtained from the conditional posterior distribution of the linear structural identification model.The Gibbs sampling based on the Markov Chain Monte Carlo(MCMC)method is employed during the process.In order to illustrate the proposed method,a 3-DOF linear shear building is used as an example to detect and quantify its damage based on model data measured before and after a severe loading event.The research shows that damage level and locations can be identified with little error by using proposed method.
基金the financial support provided by the National Natural Science Foundation of China(Grant No.51478335).
文摘Single-layer reticulated shells(SLRSs)find widespread application in the roofs of crucial public structures,such as gymnasiums and exhibition center.In this paper,a new neural-network-based method for structural damage identification in SLRSs is proposed.First,a damage vector index,NDL,that is related only to the damage localization,is proposed for SLRSs,and a damage data set is constructed from NDL data.On the basis of visualization of the NDL damage data set,the structural damaged region locations are identified using convolutional neural networks(CNNs).By cross-dividing the damaged region locations and using parallel CNNs for each regional location,the damaged region locations can be quickly and efficiently identified and the undamaged region locations can be eliminated.Second,a damage vector index,DS,that is related to the damage location and damage degree,is proposed for SLRSs.Based on the damaged region identified previously,a fully connected neural network(FCNN)is constructed to identify the location and damage degree of members.The effectiveness and reliability of the proposed method are verified by considering a numerical case of a spherical SLRS.The calculation results showed that the proposed method can quickly eliminate candidate locations of potential damaged region locations and precisely determine the location and damage degree of members.
文摘The structural damage identification through modal data often leads to solving a set of linear equations. Special numerical treatment is sometimes required for an accurate and stable solution owing to the ill conditioning of the equations. Based on the singular value decomposition (SVD) of the coefficient matrix, an error based truncation algorithm is proposed in this paper. By rejection of selected small singular values, the influence of noise can be reduced. A simply-supported beam is used as a simulation example to compare the results to other methods. Illustrative numerical examples demonstrate the good efficiency and stability of the algorithm in the nondestructive identification of structural damage through modal data.