This paper makes astudy on the interactive digital gener-alization, where map generalizationcan be divided into intellective reason-ing procedure and operational proce-dure, which are done by human andcomputer, respec...This paper makes astudy on the interactive digital gener-alization, where map generalizationcan be divided into intellective reason-ing procedure and operational proce-dure, which are done by human andcomputer, respectively. And an inter-active map generalization environmentfor large scale topographic map is thendesigned and realized. This researchfocuses on: ① the significance of re-searching an interactive map generali-zation environment, ② the features oflarge scale topographic map and inter-active map generalization, ③ the con-struction of map generalization-orien-ted database platform.展开更多
Brain-computer interface is a communication system that connects the brain with computer (or other devices) but is not dependent on the normal output of the brain (i.e., peripheral nerve and muscle). Electro-oculo...Brain-computer interface is a communication system that connects the brain with computer (or other devices) but is not dependent on the normal output of the brain (i.e., peripheral nerve and muscle). Electro-oculogram is a dominant artifact which has a significant negative influence on further analysis of real electroencephalography data. This paper presented a data adaptive technique for artifact suppression and brain wave extraction from electroencephalography signals to detect regional brain activities. Empirical mode decomposition based adaptive thresholding approach was employed here to suppress the electro-oculogram artifact. Fractional Gaussian noise was used to determine the threshold level derived from the analysis data without any training. The purified electroencephalography signal was composed of the brain waves also called rhythmic components which represent the brain activities. The rhythmic components were extracted from each electroencephalography channel using adaptive wiener filter with the original scale. The regional brain activities were mapped on the basis of the spatial distribution of rhythmic components, and the results showed that different regions of the brain are activated in response to different stimuli. This research analyzed the activities of a single rhythmic component, alpha with respect to different motor imaginations. The experimental results showed that the proposed method is very efficient in artifact suppression and identifying individual motor imagery based on the activities of alpha component.展开更多
文摘This paper makes astudy on the interactive digital gener-alization, where map generalizationcan be divided into intellective reason-ing procedure and operational proce-dure, which are done by human andcomputer, respectively. And an inter-active map generalization environmentfor large scale topographic map is thendesigned and realized. This researchfocuses on: ① the significance of re-searching an interactive map generali-zation environment, ② the features oflarge scale topographic map and inter-active map generalization, ③ the con-struction of map generalization-orien-ted database platform.
基金supported by a grant from the National Institute of Information and Communications Technology(NICT),Japan
文摘Brain-computer interface is a communication system that connects the brain with computer (or other devices) but is not dependent on the normal output of the brain (i.e., peripheral nerve and muscle). Electro-oculogram is a dominant artifact which has a significant negative influence on further analysis of real electroencephalography data. This paper presented a data adaptive technique for artifact suppression and brain wave extraction from electroencephalography signals to detect regional brain activities. Empirical mode decomposition based adaptive thresholding approach was employed here to suppress the electro-oculogram artifact. Fractional Gaussian noise was used to determine the threshold level derived from the analysis data without any training. The purified electroencephalography signal was composed of the brain waves also called rhythmic components which represent the brain activities. The rhythmic components were extracted from each electroencephalography channel using adaptive wiener filter with the original scale. The regional brain activities were mapped on the basis of the spatial distribution of rhythmic components, and the results showed that different regions of the brain are activated in response to different stimuli. This research analyzed the activities of a single rhythmic component, alpha with respect to different motor imaginations. The experimental results showed that the proposed method is very efficient in artifact suppression and identifying individual motor imagery based on the activities of alpha component.