Based on field visit and interview,the current situation of snow village in China is summarized from four aspects:core scenic spots in snow village,skiing industry in snow village,film and television industry in snow ...Based on field visit and interview,the current situation of snow village in China is summarized from four aspects:core scenic spots in snow village,skiing industry in snow village,film and television industry in snow village,and ice and snow agritainment.The investigation found that there are still significant problems in homogenization,scenic area infrastructure,and government regulation in snow village.Targeted solutions are proposed from four aspects:tapping internal advantages,strengthening top-level design and infrastructure construction,promoting tourism industry upgrading,and collaborating to innovate the ice and snow tourism supply chain,in order to further promote the economic development of snow village.展开更多
Ice and snow tourism in China has grown significantly since the country successfully hosted the Beijing Winter Olympics.Climatic conditions profoundly impact the development of ice and snow tourism;however,most studie...Ice and snow tourism in China has grown significantly since the country successfully hosted the Beijing Winter Olympics.Climatic conditions profoundly impact the development of ice and snow tourism;however,most studies have focused on constructing different climate suitability indicators for ice and snow tourism to evaluate individual regions,lacking horizontal comparative studies across multiple regions.This study aims to enrich the connotation of climate suitability for ice and snow sports,establish an evaluation model based on snowfall amount,temperature,and wind speed,and use daily meteorological data from 1991 to 2021 to horizontally compare the climate suitability for ice and snow sports in major ski tourism destinations in China.This study boasts four major findings:1)the average ice and snow sports climate index of each region decreases over time,and the overall suitability of the climate for ice and snow sports is reducing;2)northern Xinjiang exhibits the most evident regional differentiation from‘very suitable’to‘generally suitable’;3)the spatial zoning of climate suitability for ice and snow sports exhibits heterogeneity,as northern Xinjiang is divided into two‘suitable and above’zones with rotating empirical orthogonal function(REOF).Correspondingly,the four provinces of Hebei,Heilongjiang,Jilin,and Liaoning are divided into three‘generally suitable and above’zones;4)snowfall amount is the main factor affecting the climate suitability of ice and snow sports in the major ski tourist destinations in China.展开更多
Ice and snow are ecological resources used since an cient times.They bear a history of huma n harm on izati on and coexistence with nature and manifest the tenacity of the human spirit in adapting to the climate of bi...Ice and snow are ecological resources used since an cient times.They bear a history of huma n harm on izati on and coexistence with nature and manifest the tenacity of the human spirit in adapting to the climate of bitter coldness.展开更多
The accumulation of snow and ice on PV modules can have a detrimental impact on power generation,leading to reduced efficiency for prolonged periods.Thus,it becomes imperative to develop an intelligent system capable ...The accumulation of snow and ice on PV modules can have a detrimental impact on power generation,leading to reduced efficiency for prolonged periods.Thus,it becomes imperative to develop an intelligent system capable of accurately assessing the extent of snow and ice coverage on PV modules.To address this issue,the article proposes an innovative ice and snow recognition algorithm that effectively segments the ice and snow areas within the collected images.Furthermore,the algorithm incorporates an analysis of the morphological characteristics of ice and snow coverage on PV modules,allowing for the establishment of a residual ice and snow recognition process.This process utilizes both the external ellipse method and the pixel statistical method to refine the identification process.The effectiveness of the proposed algorithm is validated through extensive testing with isolated and continuous snow area pictures.The results demonstrate the algorithm’s accuracy and reliability in identifying and quantifying residual snow and ice on PV modules.In conclusion,this research presents a valuable method for accurately detecting and quantifying snow and ice coverage on PV modules.This breakthrough is of utmost significance for PV power plants,as it enables predictions of power generation efficiency and facilitates efficient PV maintenance during the challenging winter conditions characterized by snow and ice.By proactively managing snow and ice coverage,PV power plants can optimize energy production and minimize downtime,ensuring a sustainable and reliable renewable energy supply.展开更多
Light absorbing particles(LAP, e.g., black carbon, brown carbon, and dust) influence water and energy budgets of the atmosphere and snowpack in multiple ways. In addition to their effects associated with atmospheric...Light absorbing particles(LAP, e.g., black carbon, brown carbon, and dust) influence water and energy budgets of the atmosphere and snowpack in multiple ways. In addition to their effects associated with atmospheric heating by absorption of solar radiation and interactions with clouds, LAP in snow on land and ice can reduce the surface reflectance(a.k.a., surface darkening), which is likely to accelerate the snow aging process and further reduces snow albedo and increases the speed of snowpack melt. LAP in snow and ice(LAPSI) has been identified as one of major forcings affecting climate change, e.g.in the fourth and fifth assessment reports of IPCC. However, the uncertainty level in quantifying this effect remains very high. In this review paper, we document various technical methods of measuring LAPSI and review the progress made in measuring the LAPSI in Arctic, Tibetan Plateau and other mid-latitude regions. We also report the progress in modeling the mass concentrations, albedo reduction, radiative forcing, and climatic and hydrological impact of LAPSI at global and regional scales. Finally we identify some research needs for reducing the uncertainties in the impact of LAPSI on global and regional climate and the hydrological cycle.展开更多
The physical structures of snow and sea ice in the Arctic section of 150°-180°W were observed on the basis of snow-pit, ice-core, and drill-hole measurements from late July to late August 2010. Almost all th...The physical structures of snow and sea ice in the Arctic section of 150°-180°W were observed on the basis of snow-pit, ice-core, and drill-hole measurements from late July to late August 2010. Almost all the in- vestigated floes were first-year ice, except for one located north of Alaska, which was probably multi-year ice transported from north of the Canadian Arctic Archipelago during early summer. The snow covers over all the investigated floes were in the melting phase, with temperatures approaching 0℃and densities of 295-398 kg/m3. The snow covers can be divided into two to five layers of different textures, with most cases having a top layer of fresh snow, a round-grain layer in the middle, and slush and/or thin icing layers at the bottom. The first-year sea ice contained about 7%-17% granular ice at the top. There was no granular ice in the lower layers. The interior melting and desalination of sea ice introduced strong stratifications of temper- ature, salinity, density, and gas and brine volume fractions. The sea ice temperature exhibited linear cooling with depth, while the salinity and the density increased linearly with normalized depth from 0.2 to 0.9 and from 0 to 0.65, respectively. The top layer, especially the freeboard layer, had the lowest salinity and density, and consequently the largest gas content and the smallest brine content. Both the salinity and density in the ice basal layer were highly scattered due to large differences in ice porosity among the samples. The bulk average sea ice temperature, salinity, density, and gas and brine volume fractions were -0.8℃, 1.8, 837 kg/m3, 9.3% and 10.4%, respectively. The snow cover, sea ice bottom, and sea ice interior show evidences of melting during mid-August in the investigated floe located at about 87°N, 175°W.展开更多
Snow depth and sea ice thickness were observed applying an ice mass balance buoy(IMB)in the drifting ice station Tara during the International Polar Year in 2007.Detailed in situ observations on meteorological variabl...Snow depth and sea ice thickness were observed applying an ice mass balance buoy(IMB)in the drifting ice station Tara during the International Polar Year in 2007.Detailed in situ observations on meteorological variables and surface fluxes were taken during May to August.For this study,the operational analyses and short-term forecasts from two numerical weather prediction(NWP)models(ECMWF and HIRLAM)were extracted for the Tara drift trajectory.We compared the IMB,meteorological and surface flux observations against the NWP products,also applying a one-dimensional thermodynamic sea ice model(HIGHTSI)to calculate the snow and ice mass balance and its sensitivity to atmospheric forcing.The modelled snow depth time series,controlled by NWP-based precipitation,was in line with the observed one.HIGHTSI reproduced well the snowmelt onset,the progress of the melt,and the first date of snow-free conditions.HIGHTSI performed well also in the late August freezing season.Challenges remain to model the“false bottom”observed during the melting season.The evolution of the vertical temperature profiles in snow and ice was better simulated when the model was forced by in situ observations instead of NWP results.During the melting period,the nonlinear ice temperature profile was successfully modelled with both forcing options.During spring and the melting season,total sea ice mass balance was most sensitive to uncertainties in NWP results for the downward longwave radiation,followed by the downward shortwave radiation,air temperature,and wind speed.展开更多
A comprehensive analysis of sea ice and its snow cover during the summer in the Arctic Pacific sector was conducted using the observations recorded during the 7th Chinese National Arctic Research Expedition(CHIANRE-20...A comprehensive analysis of sea ice and its snow cover during the summer in the Arctic Pacific sector was conducted using the observations recorded during the 7th Chinese National Arctic Research Expedition(CHIANRE-2016)and the satellite-derived parameters of the melt pond fraction(MPF)and snow grain size(SGS)from MODIS data.The results show that there were many low-concentration ice areas in the south of 78°N,while the ice concentration and thickness increased significantly with the latitude above the north of 78°N during CHIANRE-2016.The average MPF presented a trend of increasing in June and then decreasing in early September for 2016.The average snow depth on sea ice increased with latitude in the Arctic Pacific sector.We found a widely developed depth hoar layer in the snow stratigraphic profiles.The average SGS generally increased from June to early August and then decreased from August to September in 2016,and two valley values appeared during this period due to snowfall incidents.展开更多
The study of snow and ice melt (SIM) is important in water-scarce arid regions for the assessment of water supply and quality. These studies involve unique difficulties, especially in the calibration of hydro-models...The study of snow and ice melt (SIM) is important in water-scarce arid regions for the assessment of water supply and quality. These studies involve unique difficulties, especially in the calibration of hydro-models because there is no direct way to continuously measure the SIM at hydrostations. The recursive digital filter (RDF) and the isotopic hydro-geochemical method (IHM) were coupled to separate the SIM from eight observed series of alpine streamflows in northwestern China. Validation of the calibrated methods suggested a good capture of the SIM characteristics with fair accuracy in both space and time. Applications of the coupled methods in the upper reaches of the Hei River Basin (HRB) suggested a double peak curve of the SIM fraction to streamflow for the multi-component recharged (MCR) rivers, while a single peak curve was suggested for the rainfall-dominant recharged (RDR) rivers. Given inter-annual statistics of the separation, both types of the alpine rivers have experienced an obvious decrease of SIM since 196os. In the past 10 years, the SIM in the two types of rivers has risen to the levels of the 1970s, but has remained lower than the level of the 1960s. The study provided a considerable evidence to quantify the alpine SIMbased on the separation of observed data series at gauge stations. Application of the coupled method could be helpful in the calibration and validation of SIM-related hydro-models in alpine regions.展开更多
Acid cleaning processes were performed on a class 100 laminar flow clean bench assembled inside a class 1000 clean room.The ultrapure water was produced by Millipore RO (Reverse Osmosis) and Milli-Q water purification...Acid cleaning processes were performed on a class 100 laminar flow clean bench assembled inside a class 1000 clean room.The ultrapure water was produced by Millipore RO (Reverse Osmosis) and Milli-Q water purification systems.The three purity grades of nitric acid used for cleaning include Merck reagent grade HNO3,Fisher 'TraceMetal' grade HNO3,and the purest Fisher 'Optima' grade HNO3.The various bottles,containers and other labware,which are in contact with the samples,are made of low-density polyethylene (LDPE) and FEP or PFA Teflon materials.The acid cleaning procedures of the bottles and other containers follow a successive four times cleaning through immersion in increasing purity of nitric acid baths at different concentrations during four weeks.The first acid bath is performed at room temperature,but the following three acid baths are heated on ceramic hotplates with a surface temperature of 45℃.In order to verify the efficiency of the acid cleaning method,cleaned bottles underwent a blank determination procedure using ELAN 6100 inductively coupled plasma spectrometry (ICP-MS).Results show that most measured trace elements are not detected and the elements detected are at very low concentrations.The blank values are comparable with that of bottles cleaned at Korea Polar Research Institute (KOPRI).Although the acid cleaning method is developed mainly for reliable measurements of trace elements in snow and ice samples,it can also be used for investigations of trace elements in other environmental samples.展开更多
The use of carbon-fiber heating cables(CFHC)to achieve effective melting of snow and ice deposited on roads is a method used worldwide.In this study,tensile and compressive tests have been conducted to analyze the mech...The use of carbon-fiber heating cables(CFHC)to achieve effective melting of snow and ice deposited on roads is a method used worldwide.In this study,tensile and compressive tests have been conducted to analyze the mechan-ical properties of the CFHC and assess whether the maximum tensile and compressive strengths can meet the pavement design specifications.In order to study the aging produced by multiple cycles of heating and cooling,in particular,the CFHC was repeatedly heated in a cold chamber with an ambient temperature ranging between-20℃ and+40℃.Moreover,to evaluate how the strength of the pavement is affected by its presence,the CFHC was embedded at different depths and concrete blocks with different curing ages were subjected to relevant com-pression and splitting tensile tests.Numerical simulations based on the ANSYS software have also been performed and compared with the outcomes of the static loading tests.The results show that the CFHC embedded in the concrete does not affect the compressive splitting tensile strengths of the pavement.Overall,the CFHC meets the conditions required for continued use in road ice melting applications.展开更多
Three ship-based observational campaigns were conducted to survey sea ice and snow in Prydz Bay and the surrounding waters (64.40°S-69.40°S, 76.11°E-81.29°E) from 28 November 2012 to 3 Februa...Three ship-based observational campaigns were conducted to survey sea ice and snow in Prydz Bay and the surrounding waters (64.40°S-69.40°S, 76.11°E-81.29°E) from 28 November 2012 to 3 February 2013. In this paper, we present the sea ice extent and its variation, and the ice and snow thickness distributions and their variations with time in the observed zone. In the pack ice zone, the southern edge of the pack ice changed little, whereas the northern edge retreated signiifcantly during the two earlier observation periods. Compared with the pack ice, the fast ice exhibited a signiifcantly slower variation in extent with its northernmost edge retreating southwards by 6.7 km at a rate of 0.37 km?d-1. Generally, ice showed an increment in thickness with increasing latitude from the end of November to the middle of December. Ice and snow thickness followed an approximate normal distribution during the two earlier observations (79.7±28.9 cm, 79.1±19.1 cm for ice thickness, and 11.6±6.1 cm, 9.6±3.4 cm for snow thickness, respectively), and the distribution tended to be more concentrated in mid-December than in late November. The expected value of ice thickness decreased by 0.6 cm, whereas that of snow thickness decreased by 2 cm from 28 November to 18 December 2012. Ice thickness distribution showed no obvious regularity between 31 January and 3 February, 2013.展开更多
Solution of the practical problems of the ice engineering requires the data about the strength of the ice cover that depends upon its temperature. In most cases, the snow lies on the ice cover and the ice temperature ...Solution of the practical problems of the ice engineering requires the data about the strength of the ice cover that depends upon its temperature. In most cases, the snow lies on the ice cover and the ice temperature differs from the atmospheric air temperature. To reveal the correlation of the air temperature with temperature on interfaces air-snow and snow-ice, the known in the thermophysics solution of the problem of the heat transfer through the multilayer plate was applied. Derived solution connects the temperature of air and temperature on the snow-ice interface and satisfactory correlates with data of the field measurements of the temperature within snow layer and ice cover and ice thickness on the Heilongjiang (Amur) River. Results of investigation are recommended for the ice temperature evaluation in engineering practice.展开更多
Over the past 15 years there has been much effort invested in microorganisms of glacial snow and ice on the Tibetan Plateau.These studies include:phenotypic characteristics of recovered isolates;factors(dust,temperatu...Over the past 15 years there has been much effort invested in microorganisms of glacial snow and ice on the Tibetan Plateau.These studies include:phenotypic characteristics of recovered isolates;factors(dust,temperature,altitude)influencing microbial abundance,diversity and community in one glacier;distribution of bacterial number,diversity,community along ice core depth;similarities and differences of regionally distributed ice core isolates;seasonal variation of bacterial abundance and diversity.The following need further study.Better methods for more information about the diversity,survival mechanism of glacial microorganism;more research about archaea and fungi;microbial resources;relation of glacial microorganisms with biogeochemical cycle and mass balance;research on altitude distribution.展开更多
Snow/ice stratigraphic profile is one of the traditional and important research fields in glaciology. The profile drawn by hand, however, is a tough job. Using the Object Oriented Programming (OOP) Visual Basic (VB), ...Snow/ice stratigraphic profile is one of the traditional and important research fields in glaciology. The profile drawn by hand, however, is a tough job. Using the Object Oriented Programming (OOP) Visual Basic (VB), we developed a Drawing Software for Snow/Ice Stratigraphic Profile (DSSISP). This paper introduces the functions, designing process and realizing methods of the drawing software. It presents the key techniques and aspects that should be payed attention to during the software development. Moreover, it also proposes the ideas for complete development of this drawing system. Legend database is a key aspect in the software designing. The major functions of the software include the stratigraphic profile drawing, edition and data management, which can help researchers draw the stratigraphic profile (including the scale, stratigraphic figure, text note and legend) quickly in a computer. In addition, the database technique is used to manage drawing data, which makes the figure drawing convenient and efficient. The drawing data is also convenient to be preserved, exchanged, processed and used.展开更多
The MSA and nssSO 2- 4 concentration data from the ice cores and from atmospheric aerosols of the regions surrounding Weddell Sea have been analyzed in the present paper. The results suggest that the high concen...The MSA and nssSO 2- 4 concentration data from the ice cores and from atmospheric aerosols of the regions surrounding Weddell Sea have been analyzed in the present paper. The results suggest that the high concentration of biogenic sulphur in the snow and ice as well as in the atmospheric aerosols reflects the proximity of the Weddell Sea even though a distinct strength discrepancy exists in the productivity among the areas. The snow/ice shows that the production seems to be higher in the middle of the Antarctic Peninsula than near the Filchner Ronne ice shelf. Despite the factors impacting on the transportation and deposition processes of biogenic surlphur, the concentration of MSA and nssSO 2- 4 in snow and ice shows a regular spatial distribution: decreasing with the distance from the open sea and the altitude above sea level. Nevertheless, below a certain height, the “altitude effect” is no longer significant. The “displacement” of seasonality for MSA concentration observed in ice cores of the regions has been discussed. The “out of phase” pattern in surface layer is attributed to the modification by prevailing meteorological condition to the transport and deposition process; while “relocation” in the deep layers may be caused by migration, a mechanism for which is to be further investigated.The comparative study of the atmospheric and snow/ice samples implies that at the high altitude like the Weddell Sea the atmospheric signal of SO 2- 4 and MSA could be somewhat muted in the snow samples. But the seasonal variations in the airborn sulphate and MSA are reasonably well reproduced in the surface snow, for temporal and spacial distribution. The very close ratio of MSA to nssSO 2- 4 (or to SO 2- 4) of atmospheric aerosol and snow/ice sample is indicative of weak, if any, fraction between the two species during the scavenging and deposition processes. This could serve as the internal cause to explain the relative stable MSA/nssSO 2- 4 ratio, both for atmosphere and snow, an important regional specificity for the study of marine biogenic sulphur.展开更多
The role of phoretic forces in the identification of particles acting as ice nuclei in mixed phase cloud is discussed. A method used to identify the effective ice nucleating particles is to sample ice crystals, which ...The role of phoretic forces in the identification of particles acting as ice nuclei in mixed phase cloud is discussed. A method used to identify the effective ice nucleating particles is to sample ice crystals, which are afterwards sublimated, and to examine the particles remaining after evaporation. The procedure takes into account only crystal with a maximum diameter of 20 μm, by assuming that small crystals do not scavenge aerosol during growth, and therefore that crystals contain only the effective nucleating particles. This assumption is questionable, however, as experiments have shown that even small ice crystals can scavenge aerosol. Another approach has been to compare the number and elemental composition of residual particles in small ice crystals and of aerosol near the cloud. By considering as example soot and black carbon aerosol, contradictory conclusions on their importance in the processes of ice nucleation have been reported in the literature. We suggest that, in addition to physico-chemical properties of soot/carbon aerosol particles, even the microphysical and environmental parameters involved in the transition of aerosol from gas phase to ice crystals in cloud should be considered. The contribution of phoretic forces should also be considered. After initial growth ice crystals can continue to grow by water vapour diffusion. Laboratory experiments confirm the contribution of diffusiophoresis with Stefan flow in the scavenging by snow crystals up to 3 mm in diameter. The particle scavenging efficiency of snow crystals is related to crystalline shape and depends on air relative humidity and temperature.展开更多
The radiative forcing and climate response due to black carbon(BC) in snow and/or ice were investigated by integrating observed effects of BC on snow/ice albedo into an atmospheric general circulation model(BCC AGC...The radiative forcing and climate response due to black carbon(BC) in snow and/or ice were investigated by integrating observed effects of BC on snow/ice albedo into an atmospheric general circulation model(BCC AGCM2.0.1) developed by the National Climate Center(NCC) of the China Meteorological Administration(CMA).The results show that the global annual mean surface radiative forcing due to BC in snow/ice is +0.042 W m 2,with maximum forcing found over the Tibetan Plateau and regional mean forcing exceeding +2.8 W m 2.The global annual mean surface temperature increased 0.071 C due to BC in snow/ice.Positive surface radiative forcing was clearly shown in winter and spring and increased the surface temperature of snow/ice in the Northern Hemisphere.The surface temperatures of snow-covered areas of Eurasia and North America in winter(spring) increased by 0.83 C(0.6 C) and 0.83 C(0.46 C),respectively.Snowmelt rates also increased greatly,leading to earlier snowmelt and peak runoff times.With the rise of surface temperatures in the Arctic,more water vapor could be released into the atmosphere,allowing easier cloud formation,which could lead to higher thermal emittance in the Arctic.However,the total cloud forcing could decrease due to increasing cloud cover,which will offset some of the positive feedback mechanism of the clouds.展开更多
文摘Based on field visit and interview,the current situation of snow village in China is summarized from four aspects:core scenic spots in snow village,skiing industry in snow village,film and television industry in snow village,and ice and snow agritainment.The investigation found that there are still significant problems in homogenization,scenic area infrastructure,and government regulation in snow village.Targeted solutions are proposed from four aspects:tapping internal advantages,strengthening top-level design and infrastructure construction,promoting tourism industry upgrading,and collaborating to innovate the ice and snow tourism supply chain,in order to further promote the economic development of snow village.
基金Under the auspices of the Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2022D01C372)National Natural Science Foundation of China(No.42261041)+1 种基金Major Key Programs of Philosophy and Social Sciences in Xinjiang University(No.22APY016)Xinjiang Uygur Autonomous Region Federation of Social Sciences Project Key Project(No.2023ZJFLW10)。
文摘Ice and snow tourism in China has grown significantly since the country successfully hosted the Beijing Winter Olympics.Climatic conditions profoundly impact the development of ice and snow tourism;however,most studies have focused on constructing different climate suitability indicators for ice and snow tourism to evaluate individual regions,lacking horizontal comparative studies across multiple regions.This study aims to enrich the connotation of climate suitability for ice and snow sports,establish an evaluation model based on snowfall amount,temperature,and wind speed,and use daily meteorological data from 1991 to 2021 to horizontally compare the climate suitability for ice and snow sports in major ski tourism destinations in China.This study boasts four major findings:1)the average ice and snow sports climate index of each region decreases over time,and the overall suitability of the climate for ice and snow sports is reducing;2)northern Xinjiang exhibits the most evident regional differentiation from‘very suitable’to‘generally suitable’;3)the spatial zoning of climate suitability for ice and snow sports exhibits heterogeneity,as northern Xinjiang is divided into two‘suitable and above’zones with rotating empirical orthogonal function(REOF).Correspondingly,the four provinces of Hebei,Heilongjiang,Jilin,and Liaoning are divided into three‘generally suitable and above’zones;4)snowfall amount is the main factor affecting the climate suitability of ice and snow sports in the major ski tourist destinations in China.
文摘Ice and snow are ecological resources used since an cient times.They bear a history of huma n harm on izati on and coexistence with nature and manifest the tenacity of the human spirit in adapting to the climate of bitter coldness.
基金supported by the Key Research and Development Projects in Shaanxi Province(Program No.2021GY-306)the Innovation Capability Support Program of Shaanxi(Program No.2022KJXX-41)the Key Scientific and Technological Projects of Xi’an(Program No.2022JH-RGZN-0005).
文摘The accumulation of snow and ice on PV modules can have a detrimental impact on power generation,leading to reduced efficiency for prolonged periods.Thus,it becomes imperative to develop an intelligent system capable of accurately assessing the extent of snow and ice coverage on PV modules.To address this issue,the article proposes an innovative ice and snow recognition algorithm that effectively segments the ice and snow areas within the collected images.Furthermore,the algorithm incorporates an analysis of the morphological characteristics of ice and snow coverage on PV modules,allowing for the establishment of a residual ice and snow recognition process.This process utilizes both the external ellipse method and the pixel statistical method to refine the identification process.The effectiveness of the proposed algorithm is validated through extensive testing with isolated and continuous snow area pictures.The results demonstrate the algorithm’s accuracy and reliability in identifying and quantifying residual snow and ice on PV modules.In conclusion,this research presents a valuable method for accurately detecting and quantifying snow and ice coverage on PV modules.This breakthrough is of utmost significance for PV power plants,as it enables predictions of power generation efficiency and facilitates efficient PV maintenance during the challenging winter conditions characterized by snow and ice.By proactively managing snow and ice coverage,PV power plants can optimize energy production and minimize downtime,ensuring a sustainable and reliable renewable energy supply.
基金supported by the U.S.Department of Energy, Office of Science, Biological and Environmental Research, as part of the Earth System Modeling ProgramThe NASA Modeling, Analysis, and Prediction (MAP) Program by the Science Mission Directorate at NASA Headquarters supported the work contributed by Teppei J.YASUNARI and William K.M.LAU+2 种基金The NASA GEOS-5 simulation was implemented in the system for NASA Center for Climate Simulation (NCCS).M.G.Flanner was partially supported by NSF 1253154support from the China Scholarship FundThe Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under contract DE-AC06-76RLO1830
文摘Light absorbing particles(LAP, e.g., black carbon, brown carbon, and dust) influence water and energy budgets of the atmosphere and snowpack in multiple ways. In addition to their effects associated with atmospheric heating by absorption of solar radiation and interactions with clouds, LAP in snow on land and ice can reduce the surface reflectance(a.k.a., surface darkening), which is likely to accelerate the snow aging process and further reduces snow albedo and increases the speed of snowpack melt. LAP in snow and ice(LAPSI) has been identified as one of major forcings affecting climate change, e.g.in the fourth and fifth assessment reports of IPCC. However, the uncertainty level in quantifying this effect remains very high. In this review paper, we document various technical methods of measuring LAPSI and review the progress made in measuring the LAPSI in Arctic, Tibetan Plateau and other mid-latitude regions. We also report the progress in modeling the mass concentrations, albedo reduction, radiative forcing, and climatic and hydrological impact of LAPSI at global and regional scales. Finally we identify some research needs for reducing the uncertainties in the impact of LAPSI on global and regional climate and the hydrological cycle.
基金The National Natural Science Foundation of China under contract Nos 40930848,41106160 and 41176080the State Oceanic Administration of China under contract No.2012240
文摘The physical structures of snow and sea ice in the Arctic section of 150°-180°W were observed on the basis of snow-pit, ice-core, and drill-hole measurements from late July to late August 2010. Almost all the in- vestigated floes were first-year ice, except for one located north of Alaska, which was probably multi-year ice transported from north of the Canadian Arctic Archipelago during early summer. The snow covers over all the investigated floes were in the melting phase, with temperatures approaching 0℃and densities of 295-398 kg/m3. The snow covers can be divided into two to five layers of different textures, with most cases having a top layer of fresh snow, a round-grain layer in the middle, and slush and/or thin icing layers at the bottom. The first-year sea ice contained about 7%-17% granular ice at the top. There was no granular ice in the lower layers. The interior melting and desalination of sea ice introduced strong stratifications of temper- ature, salinity, density, and gas and brine volume fractions. The sea ice temperature exhibited linear cooling with depth, while the salinity and the density increased linearly with normalized depth from 0.2 to 0.9 and from 0 to 0.65, respectively. The top layer, especially the freeboard layer, had the lowest salinity and density, and consequently the largest gas content and the smallest brine content. Both the salinity and density in the ice basal layer were highly scattered due to large differences in ice porosity among the samples. The bulk average sea ice temperature, salinity, density, and gas and brine volume fractions were -0.8℃, 1.8, 837 kg/m3, 9.3% and 10.4%, respectively. The snow cover, sea ice bottom, and sea ice interior show evidences of melting during mid-August in the investigated floe located at about 87°N, 175°W.
基金This study was initialized during DAMOCLES project(Grant no.18509)which was funded by the 6th Framework Programme of the European Commission+2 种基金The initial data analysis was funded by the Research Council of Norway’s AMORA project(Grant no.#193592)The modelling work has been supported by the Academy of Finland(Contract 317999)The finalization of this work was supported by the European Union’s Horizon 2020 research and innovation programme(Grant no.727890–INTAROS).
文摘Snow depth and sea ice thickness were observed applying an ice mass balance buoy(IMB)in the drifting ice station Tara during the International Polar Year in 2007.Detailed in situ observations on meteorological variables and surface fluxes were taken during May to August.For this study,the operational analyses and short-term forecasts from two numerical weather prediction(NWP)models(ECMWF and HIRLAM)were extracted for the Tara drift trajectory.We compared the IMB,meteorological and surface flux observations against the NWP products,also applying a one-dimensional thermodynamic sea ice model(HIGHTSI)to calculate the snow and ice mass balance and its sensitivity to atmospheric forcing.The modelled snow depth time series,controlled by NWP-based precipitation,was in line with the observed one.HIGHTSI reproduced well the snowmelt onset,the progress of the melt,and the first date of snow-free conditions.HIGHTSI performed well also in the late August freezing season.Challenges remain to model the“false bottom”observed during the melting season.The evolution of the vertical temperature profiles in snow and ice was better simulated when the model was forced by in situ observations instead of NWP results.During the melting period,the nonlinear ice temperature profile was successfully modelled with both forcing options.During spring and the melting season,total sea ice mass balance was most sensitive to uncertainties in NWP results for the downward longwave radiation,followed by the downward shortwave radiation,air temperature,and wind speed.
基金The National Key Research and Development Program of China under contract No.2016YFC1402704the National Natural Science Foundation of China under contract No.42076235the Special Fund for High Resolution Images Surveying and Mapping Application System under contract No.42-Y30B04-9001-19/21
文摘A comprehensive analysis of sea ice and its snow cover during the summer in the Arctic Pacific sector was conducted using the observations recorded during the 7th Chinese National Arctic Research Expedition(CHIANRE-2016)and the satellite-derived parameters of the melt pond fraction(MPF)and snow grain size(SGS)from MODIS data.The results show that there were many low-concentration ice areas in the south of 78°N,while the ice concentration and thickness increased significantly with the latitude above the north of 78°N during CHIANRE-2016.The average MPF presented a trend of increasing in June and then decreasing in early September for 2016.The average snow depth on sea ice increased with latitude in the Arctic Pacific sector.We found a widely developed depth hoar layer in the snow stratigraphic profiles.The average SGS generally increased from June to early August and then decreased from August to September in 2016,and two valley values appeared during this period due to snowfall incidents.
基金supported by the following grants:National Key Research and Development Program of China (Grant No. 2009CB421306)the NSFC Project (Grant Nos. 41001014, 51209119) NSFC Projects (Grant Nos. 41240002, 91225301)+1 种基金the NSFC Key Project (Grant No. 91125010)the MAIRS Project funded by the NASA LCLUC Program (Grant No. NNX08AH50G)
文摘The study of snow and ice melt (SIM) is important in water-scarce arid regions for the assessment of water supply and quality. These studies involve unique difficulties, especially in the calibration of hydro-models because there is no direct way to continuously measure the SIM at hydrostations. The recursive digital filter (RDF) and the isotopic hydro-geochemical method (IHM) were coupled to separate the SIM from eight observed series of alpine streamflows in northwestern China. Validation of the calibrated methods suggested a good capture of the SIM characteristics with fair accuracy in both space and time. Applications of the coupled methods in the upper reaches of the Hei River Basin (HRB) suggested a double peak curve of the SIM fraction to streamflow for the multi-component recharged (MCR) rivers, while a single peak curve was suggested for the rainfall-dominant recharged (RDR) rivers. Given inter-annual statistics of the separation, both types of the alpine rivers have experienced an obvious decrease of SIM since 196os. In the past 10 years, the SIM in the two types of rivers has risen to the levels of the 1970s, but has remained lower than the level of the 1960s. The study provided a considerable evidence to quantify the alpine SIMbased on the separation of observed data series at gauge stations. Application of the coupled method could be helpful in the calibration and validation of SIM-related hydro-models in alpine regions.
基金supported by National Natural Sciences Funds for Distinguished Young Scholar (40825017)the Chinese Academy of Sciences (SKLCS-ZZ-2008-06)
文摘Acid cleaning processes were performed on a class 100 laminar flow clean bench assembled inside a class 1000 clean room.The ultrapure water was produced by Millipore RO (Reverse Osmosis) and Milli-Q water purification systems.The three purity grades of nitric acid used for cleaning include Merck reagent grade HNO3,Fisher 'TraceMetal' grade HNO3,and the purest Fisher 'Optima' grade HNO3.The various bottles,containers and other labware,which are in contact with the samples,are made of low-density polyethylene (LDPE) and FEP or PFA Teflon materials.The acid cleaning procedures of the bottles and other containers follow a successive four times cleaning through immersion in increasing purity of nitric acid baths at different concentrations during four weeks.The first acid bath is performed at room temperature,but the following three acid baths are heated on ceramic hotplates with a surface temperature of 45℃.In order to verify the efficiency of the acid cleaning method,cleaned bottles underwent a blank determination procedure using ELAN 6100 inductively coupled plasma spectrometry (ICP-MS).Results show that most measured trace elements are not detected and the elements detected are at very low concentrations.The blank values are comparable with that of bottles cleaned at Korea Polar Research Institute (KOPRI).Although the acid cleaning method is developed mainly for reliable measurements of trace elements in snow and ice samples,it can also be used for investigations of trace elements in other environmental samples.
基金The authors have received financial support from the National Natural Science Foundation of China(No.52078194)the Key Research and Development Program of Hubei Province(No.2021BGD015)the Knowledge Innovation Project of Wuhan(No.2022010801010259).
文摘The use of carbon-fiber heating cables(CFHC)to achieve effective melting of snow and ice deposited on roads is a method used worldwide.In this study,tensile and compressive tests have been conducted to analyze the mechan-ical properties of the CFHC and assess whether the maximum tensile and compressive strengths can meet the pavement design specifications.In order to study the aging produced by multiple cycles of heating and cooling,in particular,the CFHC was repeatedly heated in a cold chamber with an ambient temperature ranging between-20℃ and+40℃.Moreover,to evaluate how the strength of the pavement is affected by its presence,the CFHC was embedded at different depths and concrete blocks with different curing ages were subjected to relevant com-pression and splitting tensile tests.Numerical simulations based on the ANSYS software have also been performed and compared with the outcomes of the static loading tests.The results show that the CFHC embedded in the concrete does not affect the compressive splitting tensile strengths of the pavement.Overall,the CFHC meets the conditions required for continued use in road ice melting applications.
基金supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Grant no.51221961)the National Basic Research Program of China(Grant no.2010 CB950301)the International Science and Technology Cooperation Project(Grant no.2011DFA22260)
文摘Three ship-based observational campaigns were conducted to survey sea ice and snow in Prydz Bay and the surrounding waters (64.40°S-69.40°S, 76.11°E-81.29°E) from 28 November 2012 to 3 February 2013. In this paper, we present the sea ice extent and its variation, and the ice and snow thickness distributions and their variations with time in the observed zone. In the pack ice zone, the southern edge of the pack ice changed little, whereas the northern edge retreated signiifcantly during the two earlier observation periods. Compared with the pack ice, the fast ice exhibited a signiifcantly slower variation in extent with its northernmost edge retreating southwards by 6.7 km at a rate of 0.37 km?d-1. Generally, ice showed an increment in thickness with increasing latitude from the end of November to the middle of December. Ice and snow thickness followed an approximate normal distribution during the two earlier observations (79.7±28.9 cm, 79.1±19.1 cm for ice thickness, and 11.6±6.1 cm, 9.6±3.4 cm for snow thickness, respectively), and the distribution tended to be more concentrated in mid-December than in late November. The expected value of ice thickness decreased by 0.6 cm, whereas that of snow thickness decreased by 2 cm from 28 November to 18 December 2012. Ice thickness distribution showed no obvious regularity between 31 January and 3 February, 2013.
基金Reported investigations were partially supported by the Russian Foundation for Basic researches project No. 15-58-53013 FФEH a and the National Natural Science Foundation of China under contracts No. 51279122 and No. 51511130042.
文摘Solution of the practical problems of the ice engineering requires the data about the strength of the ice cover that depends upon its temperature. In most cases, the snow lies on the ice cover and the ice temperature differs from the atmospheric air temperature. To reveal the correlation of the air temperature with temperature on interfaces air-snow and snow-ice, the known in the thermophysics solution of the problem of the heat transfer through the multilayer plate was applied. Derived solution connects the temperature of air and temperature on the snow-ice interface and satisfactory correlates with data of the field measurements of the temperature within snow layer and ice cover and ice thickness on the Heilongjiang (Amur) River. Results of investigation are recommended for the ice temperature evaluation in engineering practice.
基金supported by the National Natural Science Foundation of China(Grant No.31100369,41201067,41171052,41206175)
文摘Over the past 15 years there has been much effort invested in microorganisms of glacial snow and ice on the Tibetan Plateau.These studies include:phenotypic characteristics of recovered isolates;factors(dust,temperature,altitude)influencing microbial abundance,diversity and community in one glacier;distribution of bacterial number,diversity,community along ice core depth;similarities and differences of regionally distributed ice core isolates;seasonal variation of bacterial abundance and diversity.The following need further study.Better methods for more information about the diversity,survival mechanism of glacial microorganism;more research about archaea and fungi;microbial resources;relation of glacial microorganisms with biogeochemical cycle and mass balance;research on altitude distribution.
基金This study is supported by Ministry of Science and Technology of the People's Republic of China(2001DLA50040)Shanghai Natural Science Foundation(02ZA14107)National Natural Science Foundation(40231013).
文摘Snow/ice stratigraphic profile is one of the traditional and important research fields in glaciology. The profile drawn by hand, however, is a tough job. Using the Object Oriented Programming (OOP) Visual Basic (VB), we developed a Drawing Software for Snow/Ice Stratigraphic Profile (DSSISP). This paper introduces the functions, designing process and realizing methods of the drawing software. It presents the key techniques and aspects that should be payed attention to during the software development. Moreover, it also proposes the ideas for complete development of this drawing system. Legend database is a key aspect in the software designing. The major functions of the software include the stratigraphic profile drawing, edition and data management, which can help researchers draw the stratigraphic profile (including the scale, stratigraphic figure, text note and legend) quickly in a computer. In addition, the database technique is used to manage drawing data, which makes the figure drawing convenient and efficient. The drawing data is also convenient to be preserved, exchanged, processed and used.
文摘The MSA and nssSO 2- 4 concentration data from the ice cores and from atmospheric aerosols of the regions surrounding Weddell Sea have been analyzed in the present paper. The results suggest that the high concentration of biogenic sulphur in the snow and ice as well as in the atmospheric aerosols reflects the proximity of the Weddell Sea even though a distinct strength discrepancy exists in the productivity among the areas. The snow/ice shows that the production seems to be higher in the middle of the Antarctic Peninsula than near the Filchner Ronne ice shelf. Despite the factors impacting on the transportation and deposition processes of biogenic surlphur, the concentration of MSA and nssSO 2- 4 in snow and ice shows a regular spatial distribution: decreasing with the distance from the open sea and the altitude above sea level. Nevertheless, below a certain height, the “altitude effect” is no longer significant. The “displacement” of seasonality for MSA concentration observed in ice cores of the regions has been discussed. The “out of phase” pattern in surface layer is attributed to the modification by prevailing meteorological condition to the transport and deposition process; while “relocation” in the deep layers may be caused by migration, a mechanism for which is to be further investigated.The comparative study of the atmospheric and snow/ice samples implies that at the high altitude like the Weddell Sea the atmospheric signal of SO 2- 4 and MSA could be somewhat muted in the snow samples. But the seasonal variations in the airborn sulphate and MSA are reasonably well reproduced in the surface snow, for temporal and spacial distribution. The very close ratio of MSA to nssSO 2- 4 (or to SO 2- 4) of atmospheric aerosol and snow/ice sample is indicative of weak, if any, fraction between the two species during the scavenging and deposition processes. This could serve as the internal cause to explain the relative stable MSA/nssSO 2- 4 ratio, both for atmosphere and snow, an important regional specificity for the study of marine biogenic sulphur.
文摘The role of phoretic forces in the identification of particles acting as ice nuclei in mixed phase cloud is discussed. A method used to identify the effective ice nucleating particles is to sample ice crystals, which are afterwards sublimated, and to examine the particles remaining after evaporation. The procedure takes into account only crystal with a maximum diameter of 20 μm, by assuming that small crystals do not scavenge aerosol during growth, and therefore that crystals contain only the effective nucleating particles. This assumption is questionable, however, as experiments have shown that even small ice crystals can scavenge aerosol. Another approach has been to compare the number and elemental composition of residual particles in small ice crystals and of aerosol near the cloud. By considering as example soot and black carbon aerosol, contradictory conclusions on their importance in the processes of ice nucleation have been reported in the literature. We suggest that, in addition to physico-chemical properties of soot/carbon aerosol particles, even the microphysical and environmental parameters involved in the transition of aerosol from gas phase to ice crystals in cloud should be considered. The contribution of phoretic forces should also be considered. After initial growth ice crystals can continue to grow by water vapour diffusion. Laboratory experiments confirm the contribution of diffusiophoresis with Stefan flow in the scavenging by snow crystals up to 3 mm in diameter. The particle scavenging efficiency of snow crystals is related to crystalline shape and depends on air relative humidity and temperature.
基金supported by the National Basic Research Program of China (Grant Nos. 2010CB955608 and 2011CB403405)the Public Meteorology Special Foundation of MOST (Grant No.GYHY200906020)
文摘The radiative forcing and climate response due to black carbon(BC) in snow and/or ice were investigated by integrating observed effects of BC on snow/ice albedo into an atmospheric general circulation model(BCC AGCM2.0.1) developed by the National Climate Center(NCC) of the China Meteorological Administration(CMA).The results show that the global annual mean surface radiative forcing due to BC in snow/ice is +0.042 W m 2,with maximum forcing found over the Tibetan Plateau and regional mean forcing exceeding +2.8 W m 2.The global annual mean surface temperature increased 0.071 C due to BC in snow/ice.Positive surface radiative forcing was clearly shown in winter and spring and increased the surface temperature of snow/ice in the Northern Hemisphere.The surface temperatures of snow-covered areas of Eurasia and North America in winter(spring) increased by 0.83 C(0.6 C) and 0.83 C(0.46 C),respectively.Snowmelt rates also increased greatly,leading to earlier snowmelt and peak runoff times.With the rise of surface temperatures in the Arctic,more water vapor could be released into the atmosphere,allowing easier cloud formation,which could lead to higher thermal emittance in the Arctic.However,the total cloud forcing could decrease due to increasing cloud cover,which will offset some of the positive feedback mechanism of the clouds.