Low-cost and flexible solid polymer electrolytes are promising in all-solid-state Li-metal batteries with high energy density and safety.However,both the low room-temperature ionic conductivities and the small Li^(+)t...Low-cost and flexible solid polymer electrolytes are promising in all-solid-state Li-metal batteries with high energy density and safety.However,both the low room-temperature ionic conductivities and the small Li^(+)transference number of these electrolytes significantly increase the internal resistance and overpotential of the battery.Here,we introduce Gd-doped CeO_(2) nanowires with large surface area and rich surface oxygen vacancies to the polymer electrolyte to increase the interaction between Gd-doped CeO_(2) nanowires and polymer electrolytes,which promotes the Li-salt dissociation and increases the concentration of mobile Li ions in the composite polymer electrolytes.The optimized composite polymer electrolyte has a high Li-ion conductivity of 5×10^(-4)4 S cm^(-1) at 30℃ and a large Li+transference number of 0.47.Moreover,the composite polymer electrolytes have excellent compatibility with the metallic lithium anode and high-voltage LiNi_(0.8)Mn _(0.1)Co_(0.1)O_(2)(NMC)cathode,providing the stable cycling of all-solid-state batteries at high current densities.展开更多
The commonly-employed material for thermal barrier coatings(TBCs)is 7 wt.%Y2O3 ZrO2(7YSZ),generally deposited by electron beam-physical vapor deposition(EB-PVD).Due to the increasing demand for higher operating temper...The commonly-employed material for thermal barrier coatings(TBCs)is 7 wt.%Y2O3 ZrO2(7YSZ),generally deposited by electron beam-physical vapor deposition(EB-PVD).Due to the increasing demand for higher operating temperature in aero-derivative gas turbines,a lot of effort has been made to prevent the premature failure of columnar 7YSZ TBCs,which is induced by the microstructure degradation,sintering and spallation after the deposition of infiltrated siliceous mineral(consisting of calcium magnesium aluminum silicate(CaO MgO Al2O3 SiO2,i.e.,CMAS)).A new method called Al-modification for columnar 7YSZ TBCs against CMAS corrosion was present.The Al film was magnetron-sputtered on the surface of the columnar 7YSZ TBCs,followed by performing vacuum heat treatment of the Al-deposited TBCs.During the heat treatment,the molten Al reacted with ZrO2 to formα-Al2O3 overlay that effectively hindered CMAS infiltration.Moreover,the Al film could evaporate and re-nucleate,leading to the generation of Al2O3 nanowires,which further restrained the moving of molten CMAS.展开更多
In this work, a fast(0.5 h), green microwave-assisted synthesis of single crystalline Sb_2Se_3 nanowires was developed. For the first time we demonstrated a facile solvent-mediated process, whereby intriguing nanostru...In this work, a fast(0.5 h), green microwave-assisted synthesis of single crystalline Sb_2Se_3 nanowires was developed. For the first time we demonstrated a facile solvent-mediated process, whereby intriguing nanostructures including antimony selenide(Sb_2Se_3) nanowires and selenium(Se) microrods can be achieved by merely varying the volume ratio of ethylene glycol(EG) and H_2O free from expensive chemical and additional surfactant. The achieved uniform Sb_2Se_3 nanowire is single crystalline along [001]growth direction with a diameter of 100 nm and a length up to tens of micrometers. When evaluated as an anode of lithium-ion battery, Sb_2Se_3 nanowire can deliver a high reversible capacity of 650.2 m Ah g^(-1) at 100 mA g^(-1) and a capacity retention of 63.8% after long-term 1000 cycles at 1000 mA g^(-1), as well as superior rate capability(389.5 m Ah g^(-1) at 2000 mA g^(-1)). This easy solvent-mediated microwave synthesis approach exhibits its great universe and importance towards the fabrication of high-performance metal chalcogenide electrode materials for future low-cost, large-scale energy storage systems.展开更多
Although computational studies have demonstrated that metal ion doping can effectively narrow the bandgap of TiO_(2),the visible-light photoactivity of metal-doped TiO_(2) photoanodes is still far from satisfactory.He...Although computational studies have demonstrated that metal ion doping can effectively narrow the bandgap of TiO_(2),the visible-light photoactivity of metal-doped TiO_(2) photoanodes is still far from satisfactory.Herein,we report an effective strategy to activate the visible-light photoactivity of chromiumimplanted TiO_(2) via the incorporation of oxygen vacancies.The chromium-doped TiO_(2) activated by oxygen vacancies(Cr-TiO_(2)-vac)exhibited an incident photon-to-electron conversion efficiency(IPCE)of~6.8%at450 nm,which is one of the best values reported for metal-doped TiO_(2).Moreover,Cr-TiO_(2)-vac showed no obvious photocurrent decay after 100 h under visible-light illumination.展开更多
The conversion of carbon dioxide into valuable organic compounds is a highly promising approach to address the energy issues and environmental problems(e.g., global warming). Herein, we presents a facile and efficient...The conversion of carbon dioxide into valuable organic compounds is a highly promising approach to address the energy issues and environmental problems(e.g., global warming). Herein, we presents a facile and efficient method to prepare highly dense and well-dispersed SnO2 nanocrystals on 1 D N-doped carbon nanowires as advanced catalysts for the efficient electroreduction of CO2 to formate. The ultrasmall SnO2 coated on the N-doped carbon nanowires(SnO2@N-CNW) has been synthesized via the simple hydrothermal treatment coupled with a pyrolysis process. The unique structure enables to expose the active tin oxide and also provides the facile pathways for rapid transfer of electron and electrolyte along with the highly porous carbon foam composed with interconnected carbon nanowires. Therefore, SnO2@NCNW electrocatalyst exhibits good durability and high selectivity for formate formation with a Faradaic efficiency of ca. 90%. This work demonstrates a simple method to rationally design high-dense tin oxide nanocrystals on the conductive carbon support as advanced catalysts for CO2 electroreduction.展开更多
Mixed oxide photocatalysts, ZnO-Zn2SnO4 (ZnO-ZTO) nanowires with different sizes were prepared by a simple thermal evaporation method. The ZnO-ZTO nanowires were characterized with a scanning electron microscope, X-...Mixed oxide photocatalysts, ZnO-Zn2SnO4 (ZnO-ZTO) nanowires with different sizes were prepared by a simple thermal evaporation method. The ZnO-ZTO nanowires were characterized with a scanning electron microscope, X-ray diffraction, high-resolution transmission electron microscopy, energy-dispersive spectrom- eter, and X-ray photoelectron spectra. The photocatalytic activity of the ZnO-ZTO mixed nanowires were studied by observing the photodegradation behaviors of methyl orange aqueous solution. The results suggest that the ZnO-ZTO mixed oxide nanowires have a higher photocatalytic activity than pure ZnO and Zn2SnO4 nanowires. The photocatalyst concentration in the solution distinctly affects the degradation rate, and our results show that higher photodegradation efficiency can be achieved with a smaller amount of ZnO-ZTO nanowire catalyst, as compared to the pure ZnO and ZTO nanowires. Moreover, the photocatalytic activity can also be enhanced by reducing the average diameter of the nanowires. The activity of pure ZnO and ZTO nanowires are also enhanced by physically mixing them. These results can be explained by the synergism between the two semiconductors.展开更多
Nanowire(NW) structures is an alternative candidate for constructing the next generation photoelectrochemical water splitting system, due to the outstanding optical and electrical properties. NW photoelectrodes compar...Nanowire(NW) structures is an alternative candidate for constructing the next generation photoelectrochemical water splitting system, due to the outstanding optical and electrical properties. NW photoelectrodes comparing to traditional semiconductor photoelectrodes shows the comparatively shorter transfer distance of photo-induced carriers and the increase amount of the surface reaction sites, which is beneficial for lowering the recombination probability of charge carriers and improving their photoelectrochemical(PEC) performances. Here, we demonstrate for the first time that super-long Cu_2O NWs, more than 4.5 μm,with highly efficient water splitting performance, were synthesized using a cost-effective anodic alumina oxide(AAO) template method. In comparison with the photocathode with planar Cu_2O films, the photocathode with Cu_2O NWs demonstrates a significant enhancement in photocurrent, from –1.00 to –2.75 mA/cm^2 at –0.8 V versus Ag/AgCl. After optimization of the photoelectrochemical electrode through depositing Pt NPs with atomic layer deposition(ALD) technology on the Cu_2O NWs, the plateau of photocurrent has been enlarged to –7 mA/cm^2 with the external quantum yield up to 34% at 410 nm. This study suggests that the photoelectrode based on Cu_2O NWs is a hopeful system for establishing high-efficiency water splitting system under visible light.展开更多
Urea oxidation is a significant reaction for utilizing urea-rich wastewater or human urine as sustainable power sources which can ease the water eutrophication while generate electricity. A direct urea-hydrogen peroxi...Urea oxidation is a significant reaction for utilizing urea-rich wastewater or human urine as sustainable power sources which can ease the water eutrophication while generate electricity. A direct urea-hydrogen peroxide fuel cell is a new kind of fuel cell employing urea as fuel and hydrogen peroxide as oxidant which possesses a larger cell voltage. Herein, this work tries to promote the kinetics process of urea oxidation by preparing low-cost and high-efficient NiCo2S4 nanowires modified carbon sponge electrode. The carbon sponge used in this work with a similar three-dimensional multi-channel structure to Ni foam, is prepared by carbonizing recycled polyurethane sponge which is also a process of recycling waste. The performance of the prepared catalyst in an alkaline solution is investigated in a three-electrode system.With the introduction of Co element to the catalyst, a reduced initial urea oxidation potential and a high performance are obtained. Furthermore, a direct urea-hydrogen peroxide fuel cell is assembled using the NiCo2S4 nanowires modified carbon sponge anode. Results indicate that the prepared catalyst provides a chance to solve the current problems that hinder the development of urea electrooxidation(high initial urea oxidation potential, low performance, and high electrode costs).展开更多
Superlattice nanowires are expected to show further enhanced thermoelectric performance compared with conventional nanowires or superlattice thin films. We report the epitaxial growth of high density Bi2Te3/Sb superla...Superlattice nanowires are expected to show further enhanced thermoelectric performance compared with conventional nanowires or superlattice thin films. We report the epitaxial growth of high density Bi2Te3/Sb superlattice nanowire arrays with a very small bilayer thickness by pulse electrodeposition. Transmission electron microscopy, selected area electron diffraction and high resolution transmission electron microscopy were used to characterize the superlattice nanowires, and Harman technique was employed to measure the figure of merit (ZT) of the superlattice nanowire array in high vacuum condition. The superlattice nanowire arrays exhibit a ZT of 0.15 at 330 K, and a temperature difference of about 6.6 K can be realized across the nanowire arrays.展开更多
Mn2O3 nanowires with diameters of about 130 nm and lengths up to tens of micrometers were synthesized by the thermal decomposition of MnCO3 precursors. It was identified that the growth of the cubic Mn2O nanowires was...Mn2O3 nanowires with diameters of about 130 nm and lengths up to tens of micrometers were synthesized by the thermal decomposition of MnCO3 precursors. It was identified that the growth of the cubic Mn2O nanowires was preferential along the [001] direction. The intermediate stage containing melting state and the particles of manganese oxide played an important role for the formation of Mn2O3 with one-dimensional structure. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were used to characterize the morphology and crystal structure of the precursors and final products. Thermogravimetry analysis was also carried out to find the mechanism for the formation of Mn2O3 nanowires. The growth of the nanowires was proposed to be dominated by the conventional melt-growth mechanism.展开更多
In this work, we prepared the β-Ga_2O_3@GaN nanowires(NWs) by oxidizing GaN NWs. High-quality hexagonal wurtzite GaN NWs were achieved and the conversion from GaN to β-Ga_2O_3 was confirmed by x-ray diffraction, Ram...In this work, we prepared the β-Ga_2O_3@GaN nanowires(NWs) by oxidizing GaN NWs. High-quality hexagonal wurtzite GaN NWs were achieved and the conversion from GaN to β-Ga_2O_3 was confirmed by x-ray diffraction, Raman spectroscopy and transmission electron microscopy. The effect of the oxidation temperature and time on the oxidation degree of GaN NWs was investigated systematically. The oxidation rate of GaN NWs was estimated at different temperatures.展开更多
Recently, binary metal oxides have been considerably researched for energy storage since it can provide higher electrical conductivity and electrochemical activity than single components. Besides, rational arrays stru...Recently, binary metal oxides have been considerably researched for energy storage since it can provide higher electrical conductivity and electrochemical activity than single components. Besides, rational arrays structure design can effectively enhance the utilization of active material. In this article, we synthesis a porous NiCo_2O_4 nanowires arrays, which were intimate contact with flexible carbon cloth(CC)by a facile hydrothermal reaction and calcination treatment. The rational array structures of NiCo_2O_4 facilitate the diffusion of electrolyte and effectively increase the utilization of active material. The asobtained NiCo_2O_4@CC electrode exhibits a high capacitance of 1183 mF cm^(-2) and an outstanding capacitance retention of 90.4% after 3000 cycles. Furthermore, a flexible asymmetric supercapacitor(ASC)using NiCo_2O_4@CC as positive electrode and activated carbon cloth(ACC) as negative electrode was fabricated, which delivers a large capacitance of 750 mF cm^(-2)(12.5 F cm^(-3)), a high energy density of 0.24 mWh cm^(-2)(3.91 mWh cm^(-3)), as well as excellent cycle stability under different bending states.These remarkable results suggest that as-assembled NiCo_2O_4@CC//ACC ASC is a promising candidate in flexible energy storage applications.展开更多
The recombination loss of photo-carriers in photocatalytic systems fatally determines the energy conversion efficiency of photocatalysts.In this work,an electrostatic field was used to inhibit the recombination of pho...The recombination loss of photo-carriers in photocatalytic systems fatally determines the energy conversion efficiency of photocatalysts.In this work,an electrostatic field was used to inhibit the recombination of photo-carriers in photocatalysts by separating photo-holes and photo-electrons in space.As a model structure,(010)facet-exposed BiVO_(4)nanowires were grown on PDMS-insulated piezo-substrate of piezoelectric transducer(PZT).The PZT substrate will generate an electrostatic field under a certain stress,and the photocatalytic behavior of BiVO_(4) nanowires is influenced by the electrostatic field.Our results showed that the photocatalytic performance of the BiVO_(4) nanowires in CO_(2)reduction in the negative electrostatic field is enhanced to 5.5-fold of that without electrostatic field.Moreover,the concentration of methane in the products was raised from 29% to 64%.The enhanced CO_(2) reduction efficiency is mainly attributed to the inhibited recombination loss of photo-carriers in the BiVO_(4) nanowires.The increased energy of photo-carriers and the enhanced surface absorption to polar molecules,which are CO in this case,were also play important roles in improving the photocatalytic activity of the photocatalyst and product selectivity.This work proposed an effective strategy to improve photo-carriers separation/transfer dynamics in the photocatalytic systems,which will also be a favorable reference for photovoltaic and photodetecting devices.展开更多
The performance of the photodetector is significantly impacted by the inherent surface faults in GaAs nanowires(NWs).We combined three-dimensional(3D)gallium arsenide nanowires with zero-dimensional(0D)WS_(2)quantum d...The performance of the photodetector is significantly impacted by the inherent surface faults in GaAs nanowires(NWs).We combined three-dimensional(3D)gallium arsenide nanowires with zero-dimensional(0D)WS_(2)quantum dot(QDs)materials in a simple and convenient way to form a heterogeneous structure.Various performance enhancements have been realized through the formation of typeⅡenergy bands in heterostructures,opening up new research directions for the future development of photodetector devices.This work successfully fabricated a high-sensitivity photodetector based on WS_(2)QDs/GaAs NWs heterostructure.Under 660 nm laser excitation,the photodetector exhibits a responsivity of 368.07 A/W,a detectivity of 2.7×10^(12)Jones,an external quantum efficiency of 6.47×10^(2)%,a low-noise equivalent power of 2.27×10^(-17)W·Hz-1/2,a response time of 0.3 s,and a recovery time of 2.12 s.This study provides a new solution for the preparation of high-performance GaAs detectors and promotes the development of optoelectronic devices for GaAs NWs.展开更多
A series of Mn-doped TiO2 nanowires(NWs) were prepared by hydrothermal method at the mole fraction of Mn changing from 0 to 12.0%.X-ray powder diffraction(XRD) analysis shows that all the samples have pure anatase str...A series of Mn-doped TiO2 nanowires(NWs) were prepared by hydrothermal method at the mole fraction of Mn changing from 0 to 12.0%.X-ray powder diffraction(XRD) analysis shows that all the samples have pure anatase structure.SEM and TEM studies show that the diameter and the length of the Mn-doped TiO2 NWs are larger than those of the undoped TiO2 NWs.Energy dispersive X-ray spectroscopy(EDX) reveals that the samples are composed of Ti,Mn and O.According to magnetization measurements,all samples show ferromagnetic behavior,but only the undoped TiO2 NWs are completely ferromagnetic with a saturated magnetization about 1.0 mA·m2/kg.Mn-doped TiO2 samples exhibit antiferromagnetic and ferromagnetic(AF-FM) behaviors simultaneously.Photoluminescence(PL) spectra demonstrate the existence of MnO2 sublattice.These observations indicate that an AF-WF crossover is induced by the coexistence of TiO2 sublattice and MnO2 sublattice.展开更多
The spinel ferrites MnFe2O4 nanowires were synthesized by hydrothermal route,porous MnFe2O4 and nanoparticles morphologies were synthesized by sol-gel method with egg white.The structures,morphologies,magnetic propert...The spinel ferrites MnFe2O4 nanowires were synthesized by hydrothermal route,porous MnFe2O4 and nanoparticles morphologies were synthesized by sol-gel method with egg white.The structures,morphologies,magnetic properties and adsorption properties of these obtained ferrites with different morphologies were studied contrastively.Results show that the obtained samples exhibit ferromagnetic properties.This realizes convenient magnetic separation from solution when they are used in the treatment of organic dyes wastewater.However,the contrastive studies show that the saturation magnetizations(Ms) of MnFe2O4 with different morphologies are different and the Ms follows the order:Ms(porous)〈Ms(nanoparticles)〈Ms(nanowires).In addition,the adsorptions of methylene blue(MB) onto these ferrites depend on ferrites' morphologies seriously.The adsorption rate of MB on the porous MnFe2O4 is much higher than those onto the other two samples because the porous structure can provide high efficient mass transport through the pores.展开更多
基金This work was supported by the National Natural Science Foundation of China (51973157,61904123)the Tianjin Natural Science Foundation (18JCQNJC02900)+3 种基金the Special Grade of the Financial Support from the China Postdoctoral Science Foundation (2020T130469)the Sci-ence and Technology Plans of Tianjin (19PTSYJC00010)the Science&Technol-ogy Development Fund of Tianjin Education Commission for Higher Education (2018KJ196)State Key Laboratory of Membrane and Membrane Separation,Tiangong University.
文摘Low-cost and flexible solid polymer electrolytes are promising in all-solid-state Li-metal batteries with high energy density and safety.However,both the low room-temperature ionic conductivities and the small Li^(+)transference number of these electrolytes significantly increase the internal resistance and overpotential of the battery.Here,we introduce Gd-doped CeO_(2) nanowires with large surface area and rich surface oxygen vacancies to the polymer electrolyte to increase the interaction between Gd-doped CeO_(2) nanowires and polymer electrolytes,which promotes the Li-salt dissociation and increases the concentration of mobile Li ions in the composite polymer electrolytes.The optimized composite polymer electrolyte has a high Li-ion conductivity of 5×10^(-4)4 S cm^(-1) at 30℃ and a large Li+transference number of 0.47.Moreover,the composite polymer electrolytes have excellent compatibility with the metallic lithium anode and high-voltage LiNi_(0.8)Mn _(0.1)Co_(0.1)O_(2)(NMC)cathode,providing the stable cycling of all-solid-state batteries at high current densities.
基金Project(2017YFB0306100) supported by the National Key Research&Development Plan of ChinaProjects(51801034,51771059) supported by the National Natural Science Foundation of China+3 种基金Projects(2018GDASCX-0949,2018GDASCX-0950,2017GDASCX-0111) supported by the Guangdong Academy of Sciences,ChinaProjects(2017B090916002,2017A070701027) supported by the Guangdong Technical Research Program,ChinaProjects(2016A030312015,2017A030310315) supported by the Natural Science Foundation of Guangdong Province,ChinaProjects(201605131008557,201707010385) supported by the Technical Research Program of Guangzhou City,China
文摘The commonly-employed material for thermal barrier coatings(TBCs)is 7 wt.%Y2O3 ZrO2(7YSZ),generally deposited by electron beam-physical vapor deposition(EB-PVD).Due to the increasing demand for higher operating temperature in aero-derivative gas turbines,a lot of effort has been made to prevent the premature failure of columnar 7YSZ TBCs,which is induced by the microstructure degradation,sintering and spallation after the deposition of infiltrated siliceous mineral(consisting of calcium magnesium aluminum silicate(CaO MgO Al2O3 SiO2,i.e.,CMAS)).A new method called Al-modification for columnar 7YSZ TBCs against CMAS corrosion was present.The Al film was magnetron-sputtered on the surface of the columnar 7YSZ TBCs,followed by performing vacuum heat treatment of the Al-deposited TBCs.During the heat treatment,the molten Al reacted with ZrO2 to formα-Al2O3 overlay that effectively hindered CMAS infiltration.Moreover,the Al film could evaporate and re-nucleate,leading to the generation of Al2O3 nanowires,which further restrained the moving of molten CMAS.
基金supported by the National Key Research and Development Program of China(2016YFA0202603)the National Basic Research Program of China(2013CB934103)+5 种基金the National Natural Science Foundation of China(51521001,51602239)the National Natural Science Fund for Distinguished Young Scholars(51425204)Yellow Crane Talent(Science&Technology)Program of Wuhan Citythe Fundamental Research Funds for the Central Universities(WUT:2016III001,2016III003,2016IVA090)the Programme of Introducing Talents of Discipline to Universities(B17034)support from the Lorraine Region(nowpart of Grand Est Region)Cooperation Research Lorraine/Hubei Program 2015/2017
文摘In this work, a fast(0.5 h), green microwave-assisted synthesis of single crystalline Sb_2Se_3 nanowires was developed. For the first time we demonstrated a facile solvent-mediated process, whereby intriguing nanostructures including antimony selenide(Sb_2Se_3) nanowires and selenium(Se) microrods can be achieved by merely varying the volume ratio of ethylene glycol(EG) and H_2O free from expensive chemical and additional surfactant. The achieved uniform Sb_2Se_3 nanowire is single crystalline along [001]growth direction with a diameter of 100 nm and a length up to tens of micrometers. When evaluated as an anode of lithium-ion battery, Sb_2Se_3 nanowire can deliver a high reversible capacity of 650.2 m Ah g^(-1) at 100 mA g^(-1) and a capacity retention of 63.8% after long-term 1000 cycles at 1000 mA g^(-1), as well as superior rate capability(389.5 m Ah g^(-1) at 2000 mA g^(-1)). This easy solvent-mediated microwave synthesis approach exhibits its great universe and importance towards the fabrication of high-performance metal chalcogenide electrode materials for future low-cost, large-scale energy storage systems.
基金financially supported by the National Natural Science Foundation of China(U1867215,11722543,11875211,U1932134)the Suzhou Key Industrial Technology Innovation Project(SYG201828)+2 种基金the Hubei Provincial Natural Science Foundation(2019CFA036)the Fundamental Research Funds for the Central Universities(2042020kf0211)the financial support from the National Science Foundation(U.S.)under grant no.DMR-2003563。
文摘Although computational studies have demonstrated that metal ion doping can effectively narrow the bandgap of TiO_(2),the visible-light photoactivity of metal-doped TiO_(2) photoanodes is still far from satisfactory.Herein,we report an effective strategy to activate the visible-light photoactivity of chromiumimplanted TiO_(2) via the incorporation of oxygen vacancies.The chromium-doped TiO_(2) activated by oxygen vacancies(Cr-TiO_(2)-vac)exhibited an incident photon-to-electron conversion efficiency(IPCE)of~6.8%at450 nm,which is one of the best values reported for metal-doped TiO_(2).Moreover,Cr-TiO_(2)-vac showed no obvious photocurrent decay after 100 h under visible-light illumination.
基金financially supported by Guangdong Province Science and Technology Plan Project for Public Welfare Fund and Ability Construction Project(JCYJ20180301171324915)the National Natural Science Foundation of China(No.21503116)+1 种基金Taishan Scholars Program of Shandong Province(No.tsqn20161004)the Youth 1000 Talent Program of China。
文摘The conversion of carbon dioxide into valuable organic compounds is a highly promising approach to address the energy issues and environmental problems(e.g., global warming). Herein, we presents a facile and efficient method to prepare highly dense and well-dispersed SnO2 nanocrystals on 1 D N-doped carbon nanowires as advanced catalysts for the efficient electroreduction of CO2 to formate. The ultrasmall SnO2 coated on the N-doped carbon nanowires(SnO2@N-CNW) has been synthesized via the simple hydrothermal treatment coupled with a pyrolysis process. The unique structure enables to expose the active tin oxide and also provides the facile pathways for rapid transfer of electron and electrolyte along with the highly porous carbon foam composed with interconnected carbon nanowires. Therefore, SnO2@NCNW electrocatalyst exhibits good durability and high selectivity for formate formation with a Faradaic efficiency of ca. 90%. This work demonstrates a simple method to rationally design high-dense tin oxide nanocrystals on the conductive carbon support as advanced catalysts for CO2 electroreduction.
基金ACKNOWLEDGMENTS This work was supported by the National Natu- ral Science Foundation of China (No.50121202 and No.90406009), the National Research Foundation for the Doctoral Program of the Ministry of Education (No.20040358059) and the Natural Basic Program of China (No.2006CB922002).
文摘Mixed oxide photocatalysts, ZnO-Zn2SnO4 (ZnO-ZTO) nanowires with different sizes were prepared by a simple thermal evaporation method. The ZnO-ZTO nanowires were characterized with a scanning electron microscope, X-ray diffraction, high-resolution transmission electron microscopy, energy-dispersive spectrom- eter, and X-ray photoelectron spectra. The photocatalytic activity of the ZnO-ZTO mixed nanowires were studied by observing the photodegradation behaviors of methyl orange aqueous solution. The results suggest that the ZnO-ZTO mixed oxide nanowires have a higher photocatalytic activity than pure ZnO and Zn2SnO4 nanowires. The photocatalyst concentration in the solution distinctly affects the degradation rate, and our results show that higher photodegradation efficiency can be achieved with a smaller amount of ZnO-ZTO nanowire catalyst, as compared to the pure ZnO and ZTO nanowires. Moreover, the photocatalytic activity can also be enhanced by reducing the average diameter of the nanowires. The activity of pure ZnO and ZTO nanowires are also enhanced by physically mixing them. These results can be explained by the synergism between the two semiconductors.
基金supported by European Research Council(HiNaPc:737616)European Research Council(ThreeDsurface:240144)+8 种基金BMBF(ZIK-3DNanoDevice:03Z1MN11)DFG(LE2249_4-1)BMBF(Meta-ZIK-BioLithoMorphie:03Z1M511)National Natural Science Foundation of China(Nos.21577086,51702130,21503209)Natural Science Foundation of Jiangsu Province(BK 20170550)Jiangsu Specially-Appointed Professor ProgramHundred-Talent Program(Chinese Academy of Sciences)Beijing Natural Science Foundation(No.2162042)Key Research Program of Frontier Science,CAS(No.QYZDBSSW-SLH006)
文摘Nanowire(NW) structures is an alternative candidate for constructing the next generation photoelectrochemical water splitting system, due to the outstanding optical and electrical properties. NW photoelectrodes comparing to traditional semiconductor photoelectrodes shows the comparatively shorter transfer distance of photo-induced carriers and the increase amount of the surface reaction sites, which is beneficial for lowering the recombination probability of charge carriers and improving their photoelectrochemical(PEC) performances. Here, we demonstrate for the first time that super-long Cu_2O NWs, more than 4.5 μm,with highly efficient water splitting performance, were synthesized using a cost-effective anodic alumina oxide(AAO) template method. In comparison with the photocathode with planar Cu_2O films, the photocathode with Cu_2O NWs demonstrates a significant enhancement in photocurrent, from –1.00 to –2.75 mA/cm^2 at –0.8 V versus Ag/AgCl. After optimization of the photoelectrochemical electrode through depositing Pt NPs with atomic layer deposition(ALD) technology on the Cu_2O NWs, the plateau of photocurrent has been enlarged to –7 mA/cm^2 with the external quantum yield up to 34% at 410 nm. This study suggests that the photoelectrode based on Cu_2O NWs is a hopeful system for establishing high-efficiency water splitting system under visible light.
基金the financial support of this study by the Ph.D.Student Research and Innovation Fund of the Fundamental Research Funds for the Central Universities(grant number GK6530260034)the National Natural Science Foundation of China(grant numbers:51572052)。
文摘Urea oxidation is a significant reaction for utilizing urea-rich wastewater or human urine as sustainable power sources which can ease the water eutrophication while generate electricity. A direct urea-hydrogen peroxide fuel cell is a new kind of fuel cell employing urea as fuel and hydrogen peroxide as oxidant which possesses a larger cell voltage. Herein, this work tries to promote the kinetics process of urea oxidation by preparing low-cost and high-efficient NiCo2S4 nanowires modified carbon sponge electrode. The carbon sponge used in this work with a similar three-dimensional multi-channel structure to Ni foam, is prepared by carbonizing recycled polyurethane sponge which is also a process of recycling waste. The performance of the prepared catalyst in an alkaline solution is investigated in a three-electrode system.With the introduction of Co element to the catalyst, a reduced initial urea oxidation potential and a high performance are obtained. Furthermore, a direct urea-hydrogen peroxide fuel cell is assembled using the NiCo2S4 nanowires modified carbon sponge anode. Results indicate that the prepared catalyst provides a chance to solve the current problems that hinder the development of urea electrooxidation(high initial urea oxidation potential, low performance, and high electrode costs).
文摘Superlattice nanowires are expected to show further enhanced thermoelectric performance compared with conventional nanowires or superlattice thin films. We report the epitaxial growth of high density Bi2Te3/Sb superlattice nanowire arrays with a very small bilayer thickness by pulse electrodeposition. Transmission electron microscopy, selected area electron diffraction and high resolution transmission electron microscopy were used to characterize the superlattice nanowires, and Harman technique was employed to measure the figure of merit (ZT) of the superlattice nanowire array in high vacuum condition. The superlattice nanowire arrays exhibit a ZT of 0.15 at 330 K, and a temperature difference of about 6.6 K can be realized across the nanowire arrays.
基金Supported by the Program for New Century Excellent Talents in University of China(No.NCET-04-0653)
文摘Mn2O3 nanowires with diameters of about 130 nm and lengths up to tens of micrometers were synthesized by the thermal decomposition of MnCO3 precursors. It was identified that the growth of the cubic Mn2O nanowires was preferential along the [001] direction. The intermediate stage containing melting state and the particles of manganese oxide played an important role for the formation of Mn2O3 with one-dimensional structure. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were used to characterize the morphology and crystal structure of the precursors and final products. Thermogravimetry analysis was also carried out to find the mechanism for the formation of Mn2O3 nanowires. The growth of the nanowires was proposed to be dominated by the conventional melt-growth mechanism.
基金Project supported by National Key Research and Development Program of China(Grant No.2017YFB0404201)State Key Research and Development Program of Jiangsu Province,China(Grant No.BE2018115)+1 种基金the Fund from the Solid-state Lighting&Energy-saving Electronics Collaborative Innovation Center,PAPDthe Fund from the State Grid Shandong Electric Power Company
文摘In this work, we prepared the β-Ga_2O_3@GaN nanowires(NWs) by oxidizing GaN NWs. High-quality hexagonal wurtzite GaN NWs were achieved and the conversion from GaN to β-Ga_2O_3 was confirmed by x-ray diffraction, Raman spectroscopy and transmission electron microscopy. The effect of the oxidation temperature and time on the oxidation degree of GaN NWs was investigated systematically. The oxidation rate of GaN NWs was estimated at different temperatures.
基金supported by the National Natural Science Foundation of China(Grant nos.51402324,51402325,51302281)
文摘Recently, binary metal oxides have been considerably researched for energy storage since it can provide higher electrical conductivity and electrochemical activity than single components. Besides, rational arrays structure design can effectively enhance the utilization of active material. In this article, we synthesis a porous NiCo_2O_4 nanowires arrays, which were intimate contact with flexible carbon cloth(CC)by a facile hydrothermal reaction and calcination treatment. The rational array structures of NiCo_2O_4 facilitate the diffusion of electrolyte and effectively increase the utilization of active material. The asobtained NiCo_2O_4@CC electrode exhibits a high capacitance of 1183 mF cm^(-2) and an outstanding capacitance retention of 90.4% after 3000 cycles. Furthermore, a flexible asymmetric supercapacitor(ASC)using NiCo_2O_4@CC as positive electrode and activated carbon cloth(ACC) as negative electrode was fabricated, which delivers a large capacitance of 750 mF cm^(-2)(12.5 F cm^(-3)), a high energy density of 0.24 mWh cm^(-2)(3.91 mWh cm^(-3)), as well as excellent cycle stability under different bending states.These remarkable results suggest that as-assembled NiCo_2O_4@CC//ACC ASC is a promising candidate in flexible energy storage applications.
基金financially supported by the National Natural Science Foundation of China(21607066,51972153)Natural Science Foundation of Gansu Province of China(21JR7RA469)the Fundamental Research Funds for the Central Universities(lzujbky-2021-76).
文摘The recombination loss of photo-carriers in photocatalytic systems fatally determines the energy conversion efficiency of photocatalysts.In this work,an electrostatic field was used to inhibit the recombination of photo-carriers in photocatalysts by separating photo-holes and photo-electrons in space.As a model structure,(010)facet-exposed BiVO_(4)nanowires were grown on PDMS-insulated piezo-substrate of piezoelectric transducer(PZT).The PZT substrate will generate an electrostatic field under a certain stress,and the photocatalytic behavior of BiVO_(4) nanowires is influenced by the electrostatic field.Our results showed that the photocatalytic performance of the BiVO_(4) nanowires in CO_(2)reduction in the negative electrostatic field is enhanced to 5.5-fold of that without electrostatic field.Moreover,the concentration of methane in the products was raised from 29% to 64%.The enhanced CO_(2) reduction efficiency is mainly attributed to the inhibited recombination loss of photo-carriers in the BiVO_(4) nanowires.The increased energy of photo-carriers and the enhanced surface absorption to polar molecules,which are CO in this case,were also play important roles in improving the photocatalytic activity of the photocatalyst and product selectivity.This work proposed an effective strategy to improve photo-carriers separation/transfer dynamics in the photocatalytic systems,which will also be a favorable reference for photovoltaic and photodetecting devices.
文摘The performance of the photodetector is significantly impacted by the inherent surface faults in GaAs nanowires(NWs).We combined three-dimensional(3D)gallium arsenide nanowires with zero-dimensional(0D)WS_(2)quantum dot(QDs)materials in a simple and convenient way to form a heterogeneous structure.Various performance enhancements have been realized through the formation of typeⅡenergy bands in heterostructures,opening up new research directions for the future development of photodetector devices.This work successfully fabricated a high-sensitivity photodetector based on WS_(2)QDs/GaAs NWs heterostructure.Under 660 nm laser excitation,the photodetector exhibits a responsivity of 368.07 A/W,a detectivity of 2.7×10^(12)Jones,an external quantum efficiency of 6.47×10^(2)%,a low-noise equivalent power of 2.27×10^(-17)W·Hz-1/2,a response time of 0.3 s,and a recovery time of 2.12 s.This study provides a new solution for the preparation of high-performance GaAs detectors and promotes the development of optoelectronic devices for GaAs NWs.
基金Project(06JJ2031) supported by Natrual Science Foundation of Hunan Province, ChinaProject(06A065) supported by Education Department of Hunan Province, China
文摘A series of Mn-doped TiO2 nanowires(NWs) were prepared by hydrothermal method at the mole fraction of Mn changing from 0 to 12.0%.X-ray powder diffraction(XRD) analysis shows that all the samples have pure anatase structure.SEM and TEM studies show that the diameter and the length of the Mn-doped TiO2 NWs are larger than those of the undoped TiO2 NWs.Energy dispersive X-ray spectroscopy(EDX) reveals that the samples are composed of Ti,Mn and O.According to magnetization measurements,all samples show ferromagnetic behavior,but only the undoped TiO2 NWs are completely ferromagnetic with a saturated magnetization about 1.0 mA·m2/kg.Mn-doped TiO2 samples exhibit antiferromagnetic and ferromagnetic(AF-FM) behaviors simultaneously.Photoluminescence(PL) spectra demonstrate the existence of MnO2 sublattice.These observations indicate that an AF-WF crossover is induced by the coexistence of TiO2 sublattice and MnO2 sublattice.
基金Supported by the Fundamental Research Funds for the Central Universities of China(No.HEUCF101015)the Open Research Fund Program of State Key Laboratory of Rare Earth Resuorce Utilization,China(No.RERU2011004)
文摘The spinel ferrites MnFe2O4 nanowires were synthesized by hydrothermal route,porous MnFe2O4 and nanoparticles morphologies were synthesized by sol-gel method with egg white.The structures,morphologies,magnetic properties and adsorption properties of these obtained ferrites with different morphologies were studied contrastively.Results show that the obtained samples exhibit ferromagnetic properties.This realizes convenient magnetic separation from solution when they are used in the treatment of organic dyes wastewater.However,the contrastive studies show that the saturation magnetizations(Ms) of MnFe2O4 with different morphologies are different and the Ms follows the order:Ms(porous)〈Ms(nanoparticles)〈Ms(nanowires).In addition,the adsorptions of methylene blue(MB) onto these ferrites depend on ferrites' morphologies seriously.The adsorption rate of MB on the porous MnFe2O4 is much higher than those onto the other two samples because the porous structure can provide high efficient mass transport through the pores.