The microstructures and crack propagating characteristic of Si 3N 4 (μ)/SiC (n, w) composite ceramic were studied with AEM. The Si 3N 4 (μ)/SiC (n, w) composite ceramic consists of β Si 3N 4, β SiC, a smal...The microstructures and crack propagating characteristic of Si 3N 4 (μ)/SiC (n, w) composite ceramic were studied with AEM. The Si 3N 4 (μ)/SiC (n, w) composite ceramic consists of β Si 3N 4, β SiC, a small amount of α Si 3N 4 and α SiC, and amorphous phase. Most of Si 3N 4 grains were equiaxed crystal and also there were some bulky columnar ones. Most of SiC particles and SiC whiskers distributed at the Si 3N 4 grain boundaries and a few of smaller SiC particles in the Si 3N 4 grains. Most of amorphous structure was in the junction of several Si 3N 4 grains and thin amorphous layer was observed only at a few of Si 3N 4 boundaries. Failured cracks propagated mainly along the boundaries of the Si 3N 4 grains and partially passed through Si 3N 4 grains. The path of crack propagating might change, branching and twisting of the cracks might occur when the expanding crack meet the SiC particle and/or SiC whisker. Effect of the microstructure on strength and toughness of the composite ceramic was briefly discussed.展开更多
A 2.3 kJ Mather type pulsed plasma focus device was used for the synthesis of a TiN/a-Si3N4 thin film at room temperature. The film was characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy ...A 2.3 kJ Mather type pulsed plasma focus device was used for the synthesis of a TiN/a-Si3N4 thin film at room temperature. The film was characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The XRD pattern confirms the growth of polycrystalline TiN thin film. The XPS results indicate that the synthesized film is non-stoichiometric and contains titanium nitride, silicon nitride, and a phase of silicon oxy-nitride. The SEM and AFM results reveal that the surface of the synthesized film is quite smooth with 0.59 nm roughness (root-mean-square).展开更多
The creep behaviour of β-Si3N4 whisker reinforced Al-8.5Fe-1.3V-1.7Si composite has been investigated at the temperature 773 and 823 K. The results are characterized by high stress exponent and high apparent creep ac...The creep behaviour of β-Si3N4 whisker reinforced Al-8.5Fe-1.3V-1.7Si composite has been investigated at the temperature 773 and 823 K. The results are characterized by high stress exponent and high apparent creep activation energy The creep data can be interpreted based on the incorporation of a threshold Stress and a load transfer coefficient into the power-law creep equation. A good correlation between the normalized creep rate and normalized effective stress is available which demonstrates that the creep behaviour of both the alloy and the composite is controlled by the matrix lattice self-diffusion in AI. EXamination on microstructure shows that edge dislocations exist at the interfaces between two adjacent whiskers and the intedeces emit edge dislocations in parallel paired-columns.展开更多
The β-Si3N4 whiskers (β-Si3N4w) reinforced A1 matrix com posites were first fabricated by hot pressing, then treated through hot extrusion. The microstructure characterization dem onstrated the preferred orientation...The β-Si3N4 whiskers (β-Si3N4w) reinforced A1 matrix com posites were first fabricated by hot pressing, then treated through hot extrusion. The microstructure characterization dem onstrated the preferred orientations of both β-Si3N4w and A1 grains in the as-extruded composites. It indicated th at β-Si3N4w were aligned along the extrusion direction and A1 grains exhibited a distinct <111>ai texture. The interface betw een β-Si3N4w and A1 was in a good bonding status without voids and reaction products. Effects of extrusion process on the mechanical properties of com posites were also investigated. The results indicated the extrusion process had a prom inent strengthening effect on the mechanical properties of composites. The maxim umyield strength and ultim ate tensile strength of com posites reached up to 170 and 289 MPa, respectively, accompanied by a 12.3% elongation at fracture w hen the w hisker fraction was 15 vol.%. This im provem ent was collectively attributed to the densification of composites, the strong interface, and the preferred orientation inside composites. The yield strength of the composites reinforced with 5 vol.%β-Si3N4w corresponded well w ith the theoretical value from different strengthening mechanisms.展开更多
Effect of Y2O3-MgO addition on heterogeneous precipitation-thermal reduction synthesis and the sintering of Fe-Mo/Si3N4 powders has been investigated. It was found that the whiskers-like β-Si3N4, good wettability pha...Effect of Y2O3-MgO addition on heterogeneous precipitation-thermal reduction synthesis and the sintering of Fe-Mo/Si3N4 powders has been investigated. It was found that the whiskers-like β-Si3N4, good wettability phases on Si3N4 surface, and high toughness Fe phase appeared in Fe-Mo/Si3N4 cermets with Y2O3-MgO additives. The results show that Y2O3-MgO additives can effectively optimize the microstructures of Fe-Mo/ Si3N4 cermets, and improve the material mechanical properties. Therefore, it indicated that Y2O3-MgO additives can be used for strengthening of eintered cermets, and the dual function of whiskers self-toughening and different metal-composition toughening can be achieved in Fe-Mo/Si3N4 cermets with Y2O3-MgO additives.展开更多
文摘The microstructures and crack propagating characteristic of Si 3N 4 (μ)/SiC (n, w) composite ceramic were studied with AEM. The Si 3N 4 (μ)/SiC (n, w) composite ceramic consists of β Si 3N 4, β SiC, a small amount of α Si 3N 4 and α SiC, and amorphous phase. Most of Si 3N 4 grains were equiaxed crystal and also there were some bulky columnar ones. Most of SiC particles and SiC whiskers distributed at the Si 3N 4 grain boundaries and a few of smaller SiC particles in the Si 3N 4 grains. Most of amorphous structure was in the junction of several Si 3N 4 grains and thin amorphous layer was observed only at a few of Si 3N 4 boundaries. Failured cracks propagated mainly along the boundaries of the Si 3N 4 grains and partially passed through Si 3N 4 grains. The path of crack propagating might change, branching and twisting of the cracks might occur when the expanding crack meet the SiC particle and/or SiC whisker. Effect of the microstructure on strength and toughness of the composite ceramic was briefly discussed.
文摘A 2.3 kJ Mather type pulsed plasma focus device was used for the synthesis of a TiN/a-Si3N4 thin film at room temperature. The film was characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The XRD pattern confirms the growth of polycrystalline TiN thin film. The XPS results indicate that the synthesized film is non-stoichiometric and contains titanium nitride, silicon nitride, and a phase of silicon oxy-nitride. The SEM and AFM results reveal that the surface of the synthesized film is quite smooth with 0.59 nm roughness (root-mean-square).
文摘The creep behaviour of β-Si3N4 whisker reinforced Al-8.5Fe-1.3V-1.7Si composite has been investigated at the temperature 773 and 823 K. The results are characterized by high stress exponent and high apparent creep activation energy The creep data can be interpreted based on the incorporation of a threshold Stress and a load transfer coefficient into the power-law creep equation. A good correlation between the normalized creep rate and normalized effective stress is available which demonstrates that the creep behaviour of both the alloy and the composite is controlled by the matrix lattice self-diffusion in AI. EXamination on microstructure shows that edge dislocations exist at the interfaces between two adjacent whiskers and the intedeces emit edge dislocations in parallel paired-columns.
基金supported by National Key R&D Program of China (Nos. 2017YFB0406200, 2017YFB0703200, and 2017YFB0310400)the National Natural Science Foundation of China (No. 51501215), Shanghai Sailing Program (No. 16YF1412900)+1 种基金Science Foundation for Youth Scholar of State Key Laboratory of High Performance Ceramics and Superfine Microstructures (No. SKL201701)State Key Laboratory of New Ceramic and Fine Processing Tsinghua University (No. KF201806)
文摘The β-Si3N4 whiskers (β-Si3N4w) reinforced A1 matrix com posites were first fabricated by hot pressing, then treated through hot extrusion. The microstructure characterization dem onstrated the preferred orientations of both β-Si3N4w and A1 grains in the as-extruded composites. It indicated th at β-Si3N4w were aligned along the extrusion direction and A1 grains exhibited a distinct <111>ai texture. The interface betw een β-Si3N4w and A1 was in a good bonding status without voids and reaction products. Effects of extrusion process on the mechanical properties of com posites were also investigated. The results indicated the extrusion process had a prom inent strengthening effect on the mechanical properties of composites. The maxim umyield strength and ultim ate tensile strength of com posites reached up to 170 and 289 MPa, respectively, accompanied by a 12.3% elongation at fracture w hen the w hisker fraction was 15 vol.%. This im provem ent was collectively attributed to the densification of composites, the strong interface, and the preferred orientation inside composites. The yield strength of the composites reinforced with 5 vol.%β-Si3N4w corresponded well w ith the theoretical value from different strengthening mechanisms.
基金supported by the National Natural Science Foundation of China (Nos. 51274093 and 50804016)the Key Discipline Project Foundation of Hunan Province, China (No. 0805)
文摘Effect of Y2O3-MgO addition on heterogeneous precipitation-thermal reduction synthesis and the sintering of Fe-Mo/Si3N4 powders has been investigated. It was found that the whiskers-like β-Si3N4, good wettability phases on Si3N4 surface, and high toughness Fe phase appeared in Fe-Mo/Si3N4 cermets with Y2O3-MgO additives. The results show that Y2O3-MgO additives can effectively optimize the microstructures of Fe-Mo/ Si3N4 cermets, and improve the material mechanical properties. Therefore, it indicated that Y2O3-MgO additives can be used for strengthening of eintered cermets, and the dual function of whiskers self-toughening and different metal-composition toughening can be achieved in Fe-Mo/Si3N4 cermets with Y2O3-MgO additives.