For a continuous,increasing functionω:[0,∞)→C of finite exponential type,we establish a Hille-Yosida type theorem for strongly continuous α-times(α>0)integrated cosine operator functions with O(ω).It includes...For a continuous,increasing functionω:[0,∞)→C of finite exponential type,we establish a Hille-Yosida type theorem for strongly continuous α-times(α>0)integrated cosine operator functions with O(ω).It includes the corresponding results for n-times integrated cosine operator functions that are polynomially bounded and exponentially bounded.展开更多
In this paper, α-times integrated C-regularized cosine functions and mild α-times integrated C-existence families of second order are introduced. Equivalences are proved among α-times integrated C-regularized cosin...In this paper, α-times integrated C-regularized cosine functions and mild α-times integrated C-existence families of second order are introduced. Equivalences are proved among α-times integrated C-regularized cosine function for a linear operator A, C-wellposed of (α+1)-times abstract Cauchy problem and mild a -times integrated C-existence family of second order for A when the commutable condition is satisfied. In addition, if A = C-1AC, they are also equivalent to A generating the α -times integrated C-regularized cosine function. The characterization of an exponentially bounded mild α -times integrated C-existence family of second order is given out in terms of a Laplace transform.展开更多
Suppose X is a Banach space, and A is a closed operator. We give some equivalent conditions between A generating a local integrated cosine functions and the existence of solutions of abstract Cauchy problems.
In this paper, based on the theories of α-times Integrated Cosine Function, we discuss the approximation theorem for α-times Integrated Cosine Function and conclude the approximation theorem of exponentially bounded...In this paper, based on the theories of α-times Integrated Cosine Function, we discuss the approximation theorem for α-times Integrated Cosine Function and conclude the approximation theorem of exponentially bounded α-times Integrated Cosine Function by the approximation theorem of n-times integrated semigroups. If the semigroups are equicontinuous at each point ? , we give different methods to prove the theorem.展开更多
Let stand for the polar coordinates in R2, ?be a given constant while satisfies the Laplace equation in the wedge-shaped domain or . Here αj(j = 1,2,...,n + 1) denote certain angles such that αj αj(j = 1,2,...,n + ...Let stand for the polar coordinates in R2, ?be a given constant while satisfies the Laplace equation in the wedge-shaped domain or . Here αj(j = 1,2,...,n + 1) denote certain angles such that αj αj(j = 1,2,...,n + 1). It is known that if r = a satisfies homogeneous boundary conditions on all boundary lines ?in addition to non-homogeneous ones on the circular boundary , then an explicit expression of in terms of eigen-functions can be found through the classical method of separation of variables. But when the boundary?condition given on the circular boundary r = a is homogeneous, it is not possible to define a discrete set of eigen-functions. In this paper one shows that if the homogeneous condition in question is of the Dirichlet (or Neumann) type, then the logarithmic sine transform (or logarithmic cosine transform) defined by (or ) may be effective in solving the problem. The inverses of these transformations are expressed through the same kernels on or . Some properties of these transforms are also given in four theorems. An illustrative example, connected with the heat transfer in a two-part wedge domain, shows their effectiveness in getting exact solution. In the example in question the lateral boundaries are assumed to be non-conducting, which are expressed through Neumann type boundary conditions. The application of the method gives also the necessary condition for the solvability of the problem (the already known existence condition!). This kind of problems arise in various domain of applications such as electrostatics, magneto-statics, hydrostatics, heat transfer, mass transfer, acoustics, elasticity, etc.展开更多
基金Supported by the Natural Science Foundation of Department of Education of Jiangsu Province(06KJD110087) Supported by the Youth Foundation of NanJing Audit University(NSK2009/C04)
文摘For a continuous,increasing functionω:[0,∞)→C of finite exponential type,we establish a Hille-Yosida type theorem for strongly continuous α-times(α>0)integrated cosine operator functions with O(ω).It includes the corresponding results for n-times integrated cosine operator functions that are polynomially bounded and exponentially bounded.
基金This project is supported by the Natural Science Foundation of China and Science Development Foundation of the Colleges and University of Shanghai.
文摘In this paper, α-times integrated C-regularized cosine functions and mild α-times integrated C-existence families of second order are introduced. Equivalences are proved among α-times integrated C-regularized cosine function for a linear operator A, C-wellposed of (α+1)-times abstract Cauchy problem and mild a -times integrated C-existence family of second order for A when the commutable condition is satisfied. In addition, if A = C-1AC, they are also equivalent to A generating the α -times integrated C-regularized cosine function. The characterization of an exponentially bounded mild α -times integrated C-existence family of second order is given out in terms of a Laplace transform.
文摘Suppose X is a Banach space, and A is a closed operator. We give some equivalent conditions between A generating a local integrated cosine functions and the existence of solutions of abstract Cauchy problems.
文摘In this paper, based on the theories of α-times Integrated Cosine Function, we discuss the approximation theorem for α-times Integrated Cosine Function and conclude the approximation theorem of exponentially bounded α-times Integrated Cosine Function by the approximation theorem of n-times integrated semigroups. If the semigroups are equicontinuous at each point ? , we give different methods to prove the theorem.
文摘Let stand for the polar coordinates in R2, ?be a given constant while satisfies the Laplace equation in the wedge-shaped domain or . Here αj(j = 1,2,...,n + 1) denote certain angles such that αj αj(j = 1,2,...,n + 1). It is known that if r = a satisfies homogeneous boundary conditions on all boundary lines ?in addition to non-homogeneous ones on the circular boundary , then an explicit expression of in terms of eigen-functions can be found through the classical method of separation of variables. But when the boundary?condition given on the circular boundary r = a is homogeneous, it is not possible to define a discrete set of eigen-functions. In this paper one shows that if the homogeneous condition in question is of the Dirichlet (or Neumann) type, then the logarithmic sine transform (or logarithmic cosine transform) defined by (or ) may be effective in solving the problem. The inverses of these transformations are expressed through the same kernels on or . Some properties of these transforms are also given in four theorems. An illustrative example, connected with the heat transfer in a two-part wedge domain, shows their effectiveness in getting exact solution. In the example in question the lateral boundaries are assumed to be non-conducting, which are expressed through Neumann type boundary conditions. The application of the method gives also the necessary condition for the solvability of the problem (the already known existence condition!). This kind of problems arise in various domain of applications such as electrostatics, magneto-statics, hydrostatics, heat transfer, mass transfer, acoustics, elasticity, etc.