The reasonable dissociation limit of the second excited singlet state B1∏ of ^7LiH molecule is obtained. The accurate dissociation energy and equilibrium geometry of the B^∏ state are calculated using a symmetry-ada...The reasonable dissociation limit of the second excited singlet state B1∏ of ^7LiH molecule is obtained. The accurate dissociation energy and equilibrium geometry of the B^∏ state are calculated using a symmetry-adaptedcluster configuration interaction method in full active space. The whole potential energy curve for the B1H state is obtained over the internuclear distance ranging from about 0.10 nm to 0,54 nm, and has a least-square fit to the analytic Murrell-Sorbie function form. The vertical excitation energy is calculated from the ground state to the B^1∏ state and compared with previous theoretical results. The equilibrium internuclear distance obtained by geometry optimization is found to be quite different from that obtained by single-point energy scanning under the same calculation condition. Based on the analytic potential energy function, the harmonic frequency value of the B^1∏ state is estimated. A comparison of the theoretical calculations of dissociation energies, equilibrium interatomic distances and the analytic potential energy function with those obtained by previous theoretical results clearly shows that the present work is more comprehensive and in better agreement with experiments than previous theories, thus it is an improvement on previous theories.展开更多
The reasonable dissociation limit of the A^1∑+ state ^7LiH molecule is obtained. The accurate dissociation energy and the equilibrium geometry of this state are calculated using a symmetry-adapted-cluster configurat...The reasonable dissociation limit of the A^1∑+ state ^7LiH molecule is obtained. The accurate dissociation energy and the equilibrium geometry of this state are calculated using a symmetry-adapted-cluster configuration-interaction method in complete active space for the first time, The whole potential energy curve and the dipole moment function for the A^1∑+ state are calculated over a wide internuclear separation range from about 0.1 to 1.4 nm. The calculated equilibrium geometry and dissociation energy of this potential energy curve are of Re=0.2487 nm and De=1.064eV, respectively. The unusual negative values of the anharmonicity constant and the vibration-rotational coupling constant are of ωeXe=-4.7158cm^-1 and αe=0.08649cm^-1, respectively. The vertical excitation energy from the ground to the A^1∑+ state is calculated and the value is of 3.613eV at 0.15875nm (the equilibrium position of the ground state). The highly anomalous shape of this potential energy curve, which is exceptionally flat over a wide radial range around the equilibrium position, is discussed in detail. The harmonic frequency value of 502.47cm^-1 about this state is approximately estimated. Careful comparison of the theoretical determinations with those obtained by previous theories about the A^1∑+ state dissociation energy clearly shows that the present calculations are much closer to the experiments than previous theories, thus represents an improvement.展开更多
The accurate dissociation energy and equilibrium geometry of the ball state of ^7LiH molecule is calculated using a symmetry-adapted-cluster configuration-interaction method in full active space. And the calculated re...The accurate dissociation energy and equilibrium geometry of the ball state of ^7LiH molecule is calculated using a symmetry-adapted-cluster configuration-interaction method in full active space. And the calculated results are 0.2580 eV and 0.1958 nm for the dissociation energy and equilibrium geometry, respectively. The whole potential energy curve for the b^3∏ state is also calculated over the internuclear separation range from about 0.10 to 0.54 nm. The results are fitted by the Murrell-Sorbie function. It is found that the Murrell-Sorbie function form, which is mainly used to fit the ground-state potential energy function, is well suitable for the excited triplet b^3∏ state. The vertical excitation energy from the ground state to the b^3∏ state is calculated to be 4.233 eV. Based on the analytic potential energy function, the harmonic frequency of 610.88 cm^-1 about this state is firstly estimated. Compared with other theoretical results, this work is the most complete effort to deal with the analytic potential energy function and the harmonic frequency of this state.展开更多
The accurate dissociation energy and harmonic frequency for the highly excited 2^1Пu state of dimer ^7Li2 have been calculated using a symmetry-adapted-cluster configuration-interaction method in complete active spac...The accurate dissociation energy and harmonic frequency for the highly excited 2^1Пu state of dimer ^7Li2 have been calculated using a symmetry-adapted-cluster configuration-interaction method in complete active space. The calculated results are in excellent agreement with experimental measurements. The potential energy curves at numerous basis sets for this state are obtained over a wide internuclear separation range from about 2.4a0 to 37.0a0. And the conclusion is gained that the basis set 6-311++G(d,p) is a most suitable one. The calculated spectroscopic constants De, Re, ωe, ωeχe, ae and Be at 6-311++G(d,p) are 0.9670 eV, 0.3125 nm, 238.6 cm^-1, 1.3705 cm^-1, 0.0039 cm^-1 and 0.4921 cm^-1, respectively. The vibrational levels are calculated by solving the radial SchrSdinger equation of nuclear motion. A total of 53 vibrational levels are found and reported for the first time. The classical turning points have been computed. Comparing with the measurements, in which only the first nine vibrational levels have been obtained so far, the present calculations are very encouraging. A careful comparison of the present results of the parameters De and We with those obtained from previous theories clearly shows that the present calculations are much closer to the measurements than previous theoretical results, thus representing an improvement on the accuracy of the ab initio calculations of the potentials for this state.展开更多
The dissociative photoionization of cyclopentanone was investigated by means of a reflectron time-of-flight mass spectrometer(RTOF-MS)with tunable vacuum ultraviolet synchrotron radiation in the photon energy range of...The dissociative photoionization of cyclopentanone was investigated by means of a reflectron time-of-flight mass spectrometer(RTOF-MS)with tunable vacuum ultraviolet synchrotron radiation in the photon energy range of 9.0~15.5 eV.The photoionization efficiency(PIE)curves for molecular ion and fragment ions were measured.The ionization energy of cyclopentanone was determined to be 9.230.03 eV.Fragment ions from the dissociative photoionization of cyclopentanone were identified as C5H7O+,C4H5O+,C4H8+/C3H4O+,C3H3O+,C4H6+,C2H4O+,C3H6+,C3H5+,C3H4+,C3H3+,C2H5+and C2H4+.With the aid of the ab initio calculations at theωB97X-D/6-31+G(d,p)level of theory,the dissociative mechanisms of C5H8O+are proposed.Ring opening and hydrogen migrations are the predominant processes in most of the fragmentation pathways of cyclopentanone.展开更多
The geometries and bonding characteristics of the first-row transition-metal carbene cations MCH 2 + were investigated byab initio molecular orbital theory (HF/LAYL2DZ). All of MCH 2 k are coplanar. In the closed shel...The geometries and bonding characteristics of the first-row transition-metal carbene cations MCH 2 + were investigated byab initio molecular orbital theory (HF/LAYL2DZ). All of MCH 2 k are coplanar. In the closed shell structures the C hlnds to M with double bonds:while in the open shell structures the partial double bonds are formed. because one of the σ and π orbitals is singly occupied. It is mainly the π-type overlap between the 2p x orbital of C and 4p x , 3d xx orbitals of M+ that forms the π orbitals. The dissociation energies of C—M bond appear in periodic trend from Sc to Cu. Most of the calculated band dissociation energies are close to the experimental ones.展开更多
The reasonable dissociation limit for the G^1Ⅱg, state of dimer ^7Li2 is determined. The equilibrium internuclear distance, dissociation energy, harmonic frequency, vibrational zero energy, and adiabatic excitation e...The reasonable dissociation limit for the G^1Ⅱg, state of dimer ^7Li2 is determined. The equilibrium internuclear distance, dissociation energy, harmonic frequency, vibrational zero energy, and adiabatic excitation energy are calculated using a symmetry-adapted-cluster configuration-interactlon method in complete active space in Gaussian03 program package at such numerous basis sets as 6-311 ++G, 6-311 ++G(2df,2pd), 6-311 ++G(2df, p), cc-PVTZ, 6- 311++G(3df,3pd), CEP-121G, 6-311++G(2df, pd), 6-311++G(d,p),6-311G(3df,3pd), D95(3df,3pd), 6-311++G(3df,2p), 6-311++G(2df), 6-311++G(df, pd) D95V++, and DGDZVP. The complete potential energy curves are obtained at these sets over a wide internuclear distance range and have least squares fitted to Murrell-Sorbie function. The conclnsion shows that the basis set 6-311++G(2df, p) is a most suitable one for the G^1Ⅱg state. At this basis set, the calculated spectroscopic constants Te, De, Eo, Re, ωe, ωeXe, ae, and Be are of 3.9523 eV, 0.813 06 eV, 113.56 cm^-1, 0.320 15 nm, 227.96 cm^-1, 1.6928 cm^-1, 0.004 436 cm^-1, and 0.4689 cm^-1, respectively, which are in good agreement with measurements whenever available. The total 50 vibrational levels and corresponding inertial rotation constants are for the first time calculated and compared with available RKR data. And good agreement with measurements is obtained.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 10174019), Henan Innovation for University Prominent Research Talents (2006KYCX002) and the Natural Science Foundation of Henan Province, China (Grant No 2006140008).Acknowledgment The authors would like to heartily thank Professor Zhu Z H, of Sichuan University, for his helpful discussion about the reasonable dissociation limits at the planning stages of these calculations.
文摘The reasonable dissociation limit of the second excited singlet state B1∏ of ^7LiH molecule is obtained. The accurate dissociation energy and equilibrium geometry of the B^∏ state are calculated using a symmetry-adaptedcluster configuration interaction method in full active space. The whole potential energy curve for the B1H state is obtained over the internuclear distance ranging from about 0.10 nm to 0,54 nm, and has a least-square fit to the analytic Murrell-Sorbie function form. The vertical excitation energy is calculated from the ground state to the B^1∏ state and compared with previous theoretical results. The equilibrium internuclear distance obtained by geometry optimization is found to be quite different from that obtained by single-point energy scanning under the same calculation condition. Based on the analytic potential energy function, the harmonic frequency value of the B^1∏ state is estimated. A comparison of the theoretical calculations of dissociation energies, equilibrium interatomic distances and the analytic potential energy function with those obtained by previous theoretical results clearly shows that the present work is more comprehensive and in better agreement with experiments than previous theories, thus it is an improvement on previous theories.
基金Project supported by the National Natural Science Foundation of China (Grant No 10174019), the Natural Science Foundation of Henan Province, China (Grant No 2006,140008) and Henan Innovation for University Prominent Research Talents (Grant No 2006KYCX002).Acknowledgement We heartily thank Professor Zhu Zheng-He at Sichuan University for his helpful discussion about the reasonable dissociation limits during the planning stage of these calculations.
文摘The reasonable dissociation limit of the A^1∑+ state ^7LiH molecule is obtained. The accurate dissociation energy and the equilibrium geometry of this state are calculated using a symmetry-adapted-cluster configuration-interaction method in complete active space for the first time, The whole potential energy curve and the dipole moment function for the A^1∑+ state are calculated over a wide internuclear separation range from about 0.1 to 1.4 nm. The calculated equilibrium geometry and dissociation energy of this potential energy curve are of Re=0.2487 nm and De=1.064eV, respectively. The unusual negative values of the anharmonicity constant and the vibration-rotational coupling constant are of ωeXe=-4.7158cm^-1 and αe=0.08649cm^-1, respectively. The vertical excitation energy from the ground to the A^1∑+ state is calculated and the value is of 3.613eV at 0.15875nm (the equilibrium position of the ground state). The highly anomalous shape of this potential energy curve, which is exceptionally flat over a wide radial range around the equilibrium position, is discussed in detail. The harmonic frequency value of 502.47cm^-1 about this state is approximately estimated. Careful comparison of the theoretical determinations with those obtained by previous theories about the A^1∑+ state dissociation energy clearly shows that the present calculations are much closer to the experiments than previous theories, thus represents an improvement.
基金This work was supported by the National Natural Science Foundation of China (No. 10574039)Henan Innovation Fund for University Prominent Research Talents (No. 2006KYCX002).
文摘The accurate dissociation energy and equilibrium geometry of the ball state of ^7LiH molecule is calculated using a symmetry-adapted-cluster configuration-interaction method in full active space. And the calculated results are 0.2580 eV and 0.1958 nm for the dissociation energy and equilibrium geometry, respectively. The whole potential energy curve for the b^3∏ state is also calculated over the internuclear separation range from about 0.10 to 0.54 nm. The results are fitted by the Murrell-Sorbie function. It is found that the Murrell-Sorbie function form, which is mainly used to fit the ground-state potential energy function, is well suitable for the excited triplet b^3∏ state. The vertical excitation energy from the ground state to the b^3∏ state is calculated to be 4.233 eV. Based on the analytic potential energy function, the harmonic frequency of 610.88 cm^-1 about this state is firstly estimated. Compared with other theoretical results, this work is the most complete effort to deal with the analytic potential energy function and the harmonic frequency of this state.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574039) and Henan Innovation for University Prominent Research Talents of China (Grant No 2006KYCX002).Acknowledgment We heartily thank Professor Zhu Z H, of Sichuan University, for helpful discussion about the reasonable dissociation limit of ^7Li2(2^1Пu) during the planning stages of these calculations.
文摘The accurate dissociation energy and harmonic frequency for the highly excited 2^1Пu state of dimer ^7Li2 have been calculated using a symmetry-adapted-cluster configuration-interaction method in complete active space. The calculated results are in excellent agreement with experimental measurements. The potential energy curves at numerous basis sets for this state are obtained over a wide internuclear separation range from about 2.4a0 to 37.0a0. And the conclusion is gained that the basis set 6-311++G(d,p) is a most suitable one. The calculated spectroscopic constants De, Re, ωe, ωeχe, ae and Be at 6-311++G(d,p) are 0.9670 eV, 0.3125 nm, 238.6 cm^-1, 1.3705 cm^-1, 0.0039 cm^-1 and 0.4921 cm^-1, respectively. The vibrational levels are calculated by solving the radial SchrSdinger equation of nuclear motion. A total of 53 vibrational levels are found and reported for the first time. The classical turning points have been computed. Comparing with the measurements, in which only the first nine vibrational levels have been obtained so far, the present calculations are very encouraging. A careful comparison of the present results of the parameters De and We with those obtained from previous theories clearly shows that the present calculations are much closer to the measurements than previous theoretical results, thus representing an improvement on the accuracy of the ab initio calculations of the potentials for this state.
基金supported by the National Natural Science Foundation of China (No.91544105, No.U1532137, No.U1232209, and No.11575178)
文摘The dissociative photoionization of cyclopentanone was investigated by means of a reflectron time-of-flight mass spectrometer(RTOF-MS)with tunable vacuum ultraviolet synchrotron radiation in the photon energy range of 9.0~15.5 eV.The photoionization efficiency(PIE)curves for molecular ion and fragment ions were measured.The ionization energy of cyclopentanone was determined to be 9.230.03 eV.Fragment ions from the dissociative photoionization of cyclopentanone were identified as C5H7O+,C4H5O+,C4H8+/C3H4O+,C3H3O+,C4H6+,C2H4O+,C3H6+,C3H5+,C3H4+,C3H3+,C2H5+and C2H4+.With the aid of the ab initio calculations at theωB97X-D/6-31+G(d,p)level of theory,the dissociative mechanisms of C5H8O+are proposed.Ring opening and hydrogen migrations are the predominant processes in most of the fragmentation pathways of cyclopentanone.
基金Project supported by the National Natural Science Foundation of China (Grant No. 29170070)
文摘The geometries and bonding characteristics of the first-row transition-metal carbene cations MCH 2 + were investigated byab initio molecular orbital theory (HF/LAYL2DZ). All of MCH 2 k are coplanar. In the closed shell structures the C hlnds to M with double bonds:while in the open shell structures the partial double bonds are formed. because one of the σ and π orbitals is singly occupied. It is mainly the π-type overlap between the 2p x orbital of C and 4p x , 3d xx orbitals of M+ that forms the π orbitals. The dissociation energies of C—M bond appear in periodic trend from Sc to Cu. Most of the calculated band dissociation energies are close to the experimental ones.
基金The project supported by National Natural Science Foundation of China under Grant No. 10574039
文摘The reasonable dissociation limit for the G^1Ⅱg, state of dimer ^7Li2 is determined. The equilibrium internuclear distance, dissociation energy, harmonic frequency, vibrational zero energy, and adiabatic excitation energy are calculated using a symmetry-adapted-cluster configuration-interactlon method in complete active space in Gaussian03 program package at such numerous basis sets as 6-311 ++G, 6-311 ++G(2df,2pd), 6-311 ++G(2df, p), cc-PVTZ, 6- 311++G(3df,3pd), CEP-121G, 6-311++G(2df, pd), 6-311++G(d,p),6-311G(3df,3pd), D95(3df,3pd), 6-311++G(3df,2p), 6-311++G(2df), 6-311++G(df, pd) D95V++, and DGDZVP. The complete potential energy curves are obtained at these sets over a wide internuclear distance range and have least squares fitted to Murrell-Sorbie function. The conclnsion shows that the basis set 6-311++G(2df, p) is a most suitable one for the G^1Ⅱg state. At this basis set, the calculated spectroscopic constants Te, De, Eo, Re, ωe, ωeXe, ae, and Be are of 3.9523 eV, 0.813 06 eV, 113.56 cm^-1, 0.320 15 nm, 227.96 cm^-1, 1.6928 cm^-1, 0.004 436 cm^-1, and 0.4689 cm^-1, respectively, which are in good agreement with measurements whenever available. The total 50 vibrational levels and corresponding inertial rotation constants are for the first time calculated and compared with available RKR data. And good agreement with measurements is obtained.