Abscisic acid(ABA),hydrogen peroxide(H_(2)O_(2)) and ascorbate(AsA)–glutathione(GSH)cycle are widely known for their participation in various stresses.However,the relationship between ABA and H_(2)O_(2) levels and th...Abscisic acid(ABA),hydrogen peroxide(H_(2)O_(2)) and ascorbate(AsA)–glutathione(GSH)cycle are widely known for their participation in various stresses.However,the relationship between ABA and H_(2)O_(2) levels and the AsA–GSH cycle under drought stress in wheat has not been studied.In this study,a hydroponic experiment was conducted in wheat seedlings subjected to 15%polyethylene glycol(PEG)6000–induced dehydration.Drought stress caused the rapid accumulation of endogenous ABA and H_(2)O_(2) and significantly decreased the number of root tips compared with the control.The application of ABA significantly increased the number of root tips,whereas the application of H_(2)O_(2) markedly reduced the number of root tips,compared with that under 15%PEG-6000.In addition,drought stress markedly increased the DHA,GSH and GSSG levels,but decreased the AsA levels,AsA/DHA and GSH/GSSG ratios compared with those in the control.The activities of the four enzymes in the AsA–GSH cycle were also markedly increased under drought stress,including glutathione reductase(GR),ascorbate peroxidase(APX),monodehydroascorbate reductase(MDHAR)and dehydroascorbate reductase(DHAR),compared with those in the control.However,the application of an ABA inhibitor significantly inhibited GR,DHAR and APX activities,whereas the application of an H_(2)O_(2) inhibitor significantly inhibited DHAR and MDHAR activities.Furthermore,the application of ABA inhibitor significantly promoted the increases of H_(2)O_(2) and the application of H_(2)O_(2) inhibitor significantly blocked the increases of ABA,compared with those under 15% PEG-6000.Taken together,the results indicated that ABA and H_(2)O_(2) probably interact under drought stress in wheat;and both of them can mediate drought stress by modulating the enzymes in AsA–GSH cycle,where ABA acts as the main regulator of GR,DHAR,and APX activities,and H_(2)O_(2) acts as the main regulator of DHAR and MDHAR activities.展开更多
SubclassⅢsucrose nonfermenting1-related protein kinase 2s(SnRK2s)function in ABA and abiotic stress responses by unknown mechanisms.We found that osmotic stress/ABA-activated protein kinase 10(SAPK10),a member of ric...SubclassⅢsucrose nonfermenting1-related protein kinase 2s(SnRK2s)function in ABA and abiotic stress responses by unknown mechanisms.We found that osmotic stress/ABA-activated protein kinase 10(SAPK10),a member of rice SnRK2s,physically interacted with CBL-interacting protein kinase 1(OsCIPK1).OsCIPK1 expression was up-regulated by ABA and PEG treatment,and overexpression increased the ABA sensitivity of seed germination and root growth and plant osmotic stress tolerance.Osmotic stress or ABA-induced activation of OsCIPK1 is dependent on SAPK10.SAPK10 phosphorylates Thr-24 of OsCIPK1 in vitro,and this phosphorylation increases the activity of OsCIPK1 and positively regulates the function of OsCIPK1 in ABA responses and plant osmotic stress tolerance.This study suggests that OsCIPK1 is a direct phosphorylated substrate of SAPK10,and SAPK10-mediated phosphorylation of OsCIPK1 functions in ABA signaling and increases rice osmotic stress tolerance.展开更多
Upland rice shows dryland adaptation in the form of a deeper and denser root system and greater drought resistance than its counterpart,irrigated rice.Our previous study revealed a difference in the frequency of the O...Upland rice shows dryland adaptation in the form of a deeper and denser root system and greater drought resistance than its counterpart,irrigated rice.Our previous study revealed a difference in the frequency of the OsNCED2 gene between upland and irrigated populations.A nonsynonymous mutation(C to T,from irrigated to upland rice)may have led to functional variation fixed by artificial selection,but the exact biological function in dryland adaptation is unclear.In this study,transgenic and association analysis indicated that the domesticated fixed mutation caused functional variation in OsNCED2,increasing ABA levels,root development,and drought tolerance in upland rice under dryland conditions.OsNCED2-overexpressing rice showed increased reactive oxygen species-scavenging abilities and transcription levels of many genes functioning in stress response and development that may regulate root development and drought tolerance.OsNCED2^(T)-NILs showed a denser root system and drought resistance,promoting the yield of rice under dryland conditions.OsNCED2^(T)may confer dryland adaptation in upland rice and may find use in breeding dryland-adapted,water-saving rice.展开更多
Aluminum(Al)toxicity poses a significant constraint on field crop yields in acid soils.Zinc finger protein36(ZFP36)is well-documented for its pivotal role in enhancing tolerance to both drought and oxidative stress in...Aluminum(Al)toxicity poses a significant constraint on field crop yields in acid soils.Zinc finger protein36(ZFP36)is well-documented for its pivotal role in enhancing tolerance to both drought and oxidative stress in rice.This study unveils a novel function of ZFP36 modulated by abscisic acid(ABA)-dependent mechanisms,specifically aimed at alleviating Al toxicity in rice.Under Al stress,the expression of ZFP36significantly increased through an ABA-dependent pathway.Knocking down ZFP36 heightened Al sensitivity,while overexpressing ZFP36 conferred increased resistance to Al stress.Additionally,our investigations revealed a physical interaction between ZFP36 and pyruvate dehydrogenase kinase 1 in rice(OsPDK1).Biochemical assays further elucidated that OsPDK1 phosphorylates ZFP36 at the amino acid site 73–161.Subsequent experiments demonstrated that ZFP36 positively regulates the expression of ascorbate peroxidases(OsAPX1)and OsALS1 by binding to specific elements in their upstream segments in rice.Through genetic and phenotypic analyses,we unveiled that OsPDK1 influences ABA-triggered antioxidant defense to alleviate Al toxicity by interacting with ZFP36.In summary,our study underscores that pyruvate dehydrogenase kinase 1(OsPDK1)phosphorylates ZFP36 to modulate the activities of antioxidant enzymes via an ABA-dependent pathway,influencing tolerance of rice to soil Al toxicity.展开更多
[Objective] The regulation of ABA on rice root system growth under Cd stress was studied.[Method] Taking rice Zhonghua No.11 as material,changes in rice root system growth were studied under the treatments of Cd,Cd +...[Objective] The regulation of ABA on rice root system growth under Cd stress was studied.[Method] Taking rice Zhonghua No.11 as material,changes in rice root system growth were studied under the treatments of Cd,Cd + ABA and Cd + ABA inhibitor.[Result] Exogenous ABA could shorten the length of primary roots and adventitious roots of rice and could obviously inhibit the formation of lateral roots in primary roots and adventitious roots;ABA could obviously shorten the distance from root hair to root tip,but had little effect on the quantity of adventitious roots.[Conclusion] ABA takes part in the regulation in rice root system growth under Cd stress.展开更多
Saline–alkaline(SA) stress is characterized by high salinity and high alkalinity(high p H), which severely inhibit plant growth and cause huge losses in crop yields worldwide. Here we show that a moderate elevation o...Saline–alkaline(SA) stress is characterized by high salinity and high alkalinity(high p H), which severely inhibit plant growth and cause huge losses in crop yields worldwide. Here we show that a moderate elevation of endogenous abscisic acid(ABA) levels by RNAi-mediated suppression of Os ABA8 ox1(Os ABA8 ox1-kd), a key ABA catabolic gene, significantly increased tolerance to SA stress in rice plants. We produced Os ABA8 ox1-kd lines in two different japonica cultivars, Dongdao 4 and Nipponbare. Compared with nontransgenic control plants(WT), the Os ABA8 ox1-kd seedlings accumulated 25.9%–55.7% higher levels of endogenous ABA and exhibited reduced plasmalemma injury, ROS accumulation and Na;/K;ratio, and higher survival rates, under hydroponic alkaline conditions simulated by 10, 15, and 20 mmol L-1 of Na;CO;. In pot trials using SA field soils of different alkali levels(p H 7.59, 8.86, and 9.29), Os ABA8 ox1–kd plants showed markedly higher seedling survival rates and more vigorous plant growth, resulting in significantly higher yield components including panicle number(85.7%–128.6%), spikelets per panicle(36.9%–61.9%), branches(153.9%–236.7%), 1000–kernel weight(20.0%–28.6%), and percentage of filled spikelets(96.6%–1340.8%) at harvest time. Under severe SA soil conditions(p H = 9.29, EC = 834.4 μS cm-1),Os ABA8 ox1-kd lines showed an 194.5%–1090.8% increase in grain yield per plant relative to WT plants.These results suggest that suppression of Os ABA8 ox1 to increase endogenous ABA levels provides a new molecular approach for improving rice yield in SA paddies.展开更多
基金This research was funded by the National Key Research and Development Program of China(2023YFD2301505).
文摘Abscisic acid(ABA),hydrogen peroxide(H_(2)O_(2)) and ascorbate(AsA)–glutathione(GSH)cycle are widely known for their participation in various stresses.However,the relationship between ABA and H_(2)O_(2) levels and the AsA–GSH cycle under drought stress in wheat has not been studied.In this study,a hydroponic experiment was conducted in wheat seedlings subjected to 15%polyethylene glycol(PEG)6000–induced dehydration.Drought stress caused the rapid accumulation of endogenous ABA and H_(2)O_(2) and significantly decreased the number of root tips compared with the control.The application of ABA significantly increased the number of root tips,whereas the application of H_(2)O_(2) markedly reduced the number of root tips,compared with that under 15%PEG-6000.In addition,drought stress markedly increased the DHA,GSH and GSSG levels,but decreased the AsA levels,AsA/DHA and GSH/GSSG ratios compared with those in the control.The activities of the four enzymes in the AsA–GSH cycle were also markedly increased under drought stress,including glutathione reductase(GR),ascorbate peroxidase(APX),monodehydroascorbate reductase(MDHAR)and dehydroascorbate reductase(DHAR),compared with those in the control.However,the application of an ABA inhibitor significantly inhibited GR,DHAR and APX activities,whereas the application of an H_(2)O_(2) inhibitor significantly inhibited DHAR and MDHAR activities.Furthermore,the application of ABA inhibitor significantly promoted the increases of H_(2)O_(2) and the application of H_(2)O_(2) inhibitor significantly blocked the increases of ABA,compared with those under 15% PEG-6000.Taken together,the results indicated that ABA and H_(2)O_(2) probably interact under drought stress in wheat;and both of them can mediate drought stress by modulating the enzymes in AsA–GSH cycle,where ABA acts as the main regulator of GR,DHAR,and APX activities,and H_(2)O_(2) acts as the main regulator of DHAR and MDHAR activities.
基金supported by grants from the National Natural Science Foundation of China(31971824,32170316)。
文摘SubclassⅢsucrose nonfermenting1-related protein kinase 2s(SnRK2s)function in ABA and abiotic stress responses by unknown mechanisms.We found that osmotic stress/ABA-activated protein kinase 10(SAPK10),a member of rice SnRK2s,physically interacted with CBL-interacting protein kinase 1(OsCIPK1).OsCIPK1 expression was up-regulated by ABA and PEG treatment,and overexpression increased the ABA sensitivity of seed germination and root growth and plant osmotic stress tolerance.Osmotic stress or ABA-induced activation of OsCIPK1 is dependent on SAPK10.SAPK10 phosphorylates Thr-24 of OsCIPK1 in vitro,and this phosphorylation increases the activity of OsCIPK1 and positively regulates the function of OsCIPK1 in ABA responses and plant osmotic stress tolerance.This study suggests that OsCIPK1 is a direct phosphorylated substrate of SAPK10,and SAPK10-mediated phosphorylation of OsCIPK1 functions in ABA signaling and increases rice osmotic stress tolerance.
基金This work was supported by the National Natural Science Foundation of China(U1602266,32060474,and 31601274)grants from the Yunnan Provincial Science and Technology Department(202005AF150009 and 202101AS070001).
文摘Upland rice shows dryland adaptation in the form of a deeper and denser root system and greater drought resistance than its counterpart,irrigated rice.Our previous study revealed a difference in the frequency of the OsNCED2 gene between upland and irrigated populations.A nonsynonymous mutation(C to T,from irrigated to upland rice)may have led to functional variation fixed by artificial selection,but the exact biological function in dryland adaptation is unclear.In this study,transgenic and association analysis indicated that the domesticated fixed mutation caused functional variation in OsNCED2,increasing ABA levels,root development,and drought tolerance in upland rice under dryland conditions.OsNCED2-overexpressing rice showed increased reactive oxygen species-scavenging abilities and transcription levels of many genes functioning in stress response and development that may regulate root development and drought tolerance.OsNCED2^(T)-NILs showed a denser root system and drought resistance,promoting the yield of rice under dryland conditions.OsNCED2^(T)may confer dryland adaptation in upland rice and may find use in breeding dryland-adapted,water-saving rice.
基金provided by the National Natural Science Foundation of China (31901202,31672228)National Distinguished Expert Project (WQ20174400441)+2 种基金the Higher Education Department of Guangdong province (2020KCXTD025)Key Laboratory Project of Guangdong Province (2022B1212010015)the Australian Research Council (DP150101663)。
文摘Aluminum(Al)toxicity poses a significant constraint on field crop yields in acid soils.Zinc finger protein36(ZFP36)is well-documented for its pivotal role in enhancing tolerance to both drought and oxidative stress in rice.This study unveils a novel function of ZFP36 modulated by abscisic acid(ABA)-dependent mechanisms,specifically aimed at alleviating Al toxicity in rice.Under Al stress,the expression of ZFP36significantly increased through an ABA-dependent pathway.Knocking down ZFP36 heightened Al sensitivity,while overexpressing ZFP36 conferred increased resistance to Al stress.Additionally,our investigations revealed a physical interaction between ZFP36 and pyruvate dehydrogenase kinase 1 in rice(OsPDK1).Biochemical assays further elucidated that OsPDK1 phosphorylates ZFP36 at the amino acid site 73–161.Subsequent experiments demonstrated that ZFP36 positively regulates the expression of ascorbate peroxidases(OsAPX1)and OsALS1 by binding to specific elements in their upstream segments in rice.Through genetic and phenotypic analyses,we unveiled that OsPDK1 influences ABA-triggered antioxidant defense to alleviate Al toxicity by interacting with ZFP36.In summary,our study underscores that pyruvate dehydrogenase kinase 1(OsPDK1)phosphorylates ZFP36 to modulate the activities of antioxidant enzymes via an ABA-dependent pathway,influencing tolerance of rice to soil Al toxicity.
基金Supported by the National Natural Science Foundation of China~~
文摘[Objective] The regulation of ABA on rice root system growth under Cd stress was studied.[Method] Taking rice Zhonghua No.11 as material,changes in rice root system growth were studied under the treatments of Cd,Cd + ABA and Cd + ABA inhibitor.[Result] Exogenous ABA could shorten the length of primary roots and adventitious roots of rice and could obviously inhibit the formation of lateral roots in primary roots and adventitious roots;ABA could obviously shorten the distance from root hair to root tip,but had little effect on the quantity of adventitious roots.[Conclusion] ABA takes part in the regulation in rice root system growth under Cd stress.
基金supported by National Key Research and Development Program of China(SQ2018YFD020224)Chinese Academy of Sciences STS Network Foundation(KFJ-SW-STS-141-01)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(XDA080X0X0X)the Foundation of Innovation team International Partner Program of Chinese Academy of Sciences(KZZD-EW-TZ-07-08)。
文摘Saline–alkaline(SA) stress is characterized by high salinity and high alkalinity(high p H), which severely inhibit plant growth and cause huge losses in crop yields worldwide. Here we show that a moderate elevation of endogenous abscisic acid(ABA) levels by RNAi-mediated suppression of Os ABA8 ox1(Os ABA8 ox1-kd), a key ABA catabolic gene, significantly increased tolerance to SA stress in rice plants. We produced Os ABA8 ox1-kd lines in two different japonica cultivars, Dongdao 4 and Nipponbare. Compared with nontransgenic control plants(WT), the Os ABA8 ox1-kd seedlings accumulated 25.9%–55.7% higher levels of endogenous ABA and exhibited reduced plasmalemma injury, ROS accumulation and Na;/K;ratio, and higher survival rates, under hydroponic alkaline conditions simulated by 10, 15, and 20 mmol L-1 of Na;CO;. In pot trials using SA field soils of different alkali levels(p H 7.59, 8.86, and 9.29), Os ABA8 ox1–kd plants showed markedly higher seedling survival rates and more vigorous plant growth, resulting in significantly higher yield components including panicle number(85.7%–128.6%), spikelets per panicle(36.9%–61.9%), branches(153.9%–236.7%), 1000–kernel weight(20.0%–28.6%), and percentage of filled spikelets(96.6%–1340.8%) at harvest time. Under severe SA soil conditions(p H = 9.29, EC = 834.4 μS cm-1),Os ABA8 ox1-kd lines showed an 194.5%–1090.8% increase in grain yield per plant relative to WT plants.These results suggest that suppression of Os ABA8 ox1 to increase endogenous ABA levels provides a new molecular approach for improving rice yield in SA paddies.