This paper investigates the marginal abatement cost (MAC) of CO: emissions across 104 Chinese cities between 2001 and 2008. Based on parametric directional distance function, this paper discovers that the mean marg...This paper investigates the marginal abatement cost (MAC) of CO: emissions across 104 Chinese cities between 2001 and 2008. Based on parametric directional distance function, this paper discovers that the mean marginal abatement cost of CO2 emissions for sample cities was 967 yuan/ton. In terms of region, CO: marginal abatement cost is significantly higher in China's eastern region than in central and western regions; in terms of provincial-level region, it is the highest in Shanghai and the lowest in Shaanxi in terms of city, it is the highest in Shanghai and the lowest in Zhangjiajie with the ratio between their medians being at 48:1; in terms of time, marginal abatement cost has been always on the rise with significant intercity disparities. There is a U-shaped curve relationship between marginal abatement cost of cities and CO2 emissions per unit of GDP, which is negatively correlated with the share of secondary industry and positively correlated with the level of urbanization.展开更多
The directional distance function(DDF)framework has been widely used to estimate the marginal abatement cost(MAC)of CO_(2)emissions to support decision-making in environmental sustainability and climate change issues....The directional distance function(DDF)framework has been widely used to estimate the marginal abatement cost(MAC)of CO_(2)emissions to support decision-making in environmental sustainability and climate change issues.In the use of DDF,an important task is mapping evaluated entities towards a realistic production technology frontier.This study develops a new nonparametric approach for estimating the MAC of CO_(2)emissions.The approach incorporates the optimal endogenous direction into an enhanced environmental production technology and has three advantages.First,it avoids the arbitrariness in mapping directions.Second,it captures the heterogeneity in optimization paths across different decision-making units(DMUs).Third,it generates more reliable benchmarks for estimating MAC by constructing an environmental technology frontier that is consistent with the material balance principle.We apply the approach to study China's thermal power industry and find clear heterogeneity in MACs and optimization paths at the province level.The results on the optimal endogenous directions show that the DMUs prefer to increase both desirable output and CO_(2)emissions when CO_(2)emissions are unregulated.Comparisons with other approaches reveal that arbitrarily mapping exogenous directions and technology representations are likely to generate distorted and unrealistic MACs.展开更多
For achieving air pollutant emission reduction targets,total pollutant amount control is being continuously promoted in China.However,the traditional pattern of pollutant emission reduction allocation regardless of ec...For achieving air pollutant emission reduction targets,total pollutant amount control is being continuously promoted in China.However,the traditional pattern of pollutant emission reduction allocation regardless of economic cost often results in unreasonable emission reduction pathways,and industrial enterprises as the main implementers have to pay excessively high costs.Therefore,this study adopted economic efficiency as its main consideration,used specific emission reduction measures(ERMs)of industrial enterprises as minimum allocation units,and constructed an enterprise-level pollutant emission reduction allocation(EPERA)model with minimization of the total abatement cost(TAC)as the objective function,and fairness and feasibility as constraints for emission reduction allocation.Taking City M in China as an example,the EPERA model was used to construct a Pareto optimal frontier and obtain the optimal trade-off result.Results showed that under basic and strict emission reduction regulations,the TAC of the optimal trade-off point was reduced by 46.40%and 45.77%,respectively,in comparison with that achieved when only considering fairness,and the Gini coefficient was 0.26 and 0.31,respectively.The abatement target was attained with controllable cost and relatively fair and reasonable allocation.In addition,enterprises allocated different emission reduction quotas under different ERMs had specific characteristics that required targeted optimization of technology and equipment to enable them to achieve optimal emission reduction effects for the same abatement cost.展开更多
After a decade of planning and trials,China officially launched a national carbon trading in July 2021.Using a standard economic model,this study shows that an unconstrained carbon trading market would face a dilemma ...After a decade of planning and trials,China officially launched a national carbon trading in July 2021.Using a standard economic model,this study shows that an unconstrained carbon trading market would face a dilemma between minimizing pollution control costs and maximizing social benefits.We further show that this would be a significant challenge in China.Our results show that areas with higher population densities also would have higher costs for carbon reduction,and hence the polluters in those areas would be net buyers in the national market.Moreover,our analysis indicates a significantly high correlation between carbon dioxide emissions and other local pollutants.Therefore,cross-regional transactions may result in more emission of other pollutants in areas with higher population density under the unconstrained national cap-and-trade system and cause larger losses in social benefits.We call for more studies to address the issue.展开更多
Emission projection and marginal abatement cost curves(MACs) are the central components of any assessment of future carbon market, such as CDM (clean development mechanism) potentials, carbon quota price etc. However,...Emission projection and marginal abatement cost curves(MACs) are the central components of any assessment of future carbon market, such as CDM (clean development mechanism) potentials, carbon quota price etc. However, they are products of very complex, dynamic systems driven by forces like population growth, economic development, resource endowments, technology progress and so on. The modeling approaches for emission projection and MACs evaluation were summarized, and some major models and their results were compared. Accordingly, reduction and cost requirements to achieve the Kyoto target were estimated. It is concluded that Annex I Parties' total reduction requirements range from 503—1304 MtC with USA participation and decrease significantly to 140—612 MtC after USA's withdrawal. Total costs vary from 21—77 BUSD with USA and from 5—36 BUSD without USA if only domestic reduction actions are taken. The costs would sharply reduce while considering the three flexible mechanisms defined in the Kyoto Protocol with domestic actions' share in the all mitigation strategies drops to only 0—16%.展开更多
There are numerous studies comparing different kinds of environmental taxes and standards.However,forms of environmental standards focused by former researchers are usually quantitybased limits/standards(e.g.pounds pe...There are numerous studies comparing different kinds of environmental taxes and standards.However,forms of environmental standards focused by former researchers are usually quantitybased limits/standards(e.g.pounds per day or pounds per unit of output).Concentration-based emission standard(e.g.milligrams per liter of wastewater) as one important form of environmental standard has not been given much attention.In this article,comparable estimates of their probable effect on enterprise pollution reduction will be developed for concentrationbased effluent standards,effluent taxes,and a combination of both.A linear simulation model is used to clearly and obviously compare the effects of effluent taxes and concentration-based standards within the same figure.With one detailed application to the paper industry,some enlightenment and conclusions-as well as the general applicability of these principles-are then provided:Under the same effluent tax rate,enterprises,groups,and industries that are cleaner will reduce more pollutants than those that have higher pollutant abatement costs.It is recommended that effluent taxes are set by avoiding cutting it even at one stroke and considering the feasibility of pollution-reducing technology in various industries.It is necessary to reduce MAC of enterprises to better stimulate enterprises' or industries' emission reduction by preferential measures,such as high tax rate coordinated by speeding up the depreciation of environmental protection equipment.展开更多
In order to control the air pollution caused by ships and improve ambient air quality,China set up three domestic emission control areas(DECAs)in 2015 in the Pearl River Delta,the Yangtze River Delta and Bohai Rim(Bei...In order to control the air pollution caused by ships and improve ambient air quality,China set up three domestic emission control areas(DECAs)in 2015 in the Pearl River Delta,the Yangtze River Delta and Bohai Rim(Beijing-Tianjin-Hebei)waters.In order to meet the emission requirements established at the 70th meeting of the Marine Environmental Protection Committee(MEPC),China intends to apply for the establishment of three international Emission Control Area(ECA)in 2030 for these DECAs.This paper discusses existing technologies to reduce emissions of nitrogen oxides(NOx)and sulphur oxides(SOx),and examines the abatement costs for the shipping industry in the year 2030 to comply with this action.Based on an examination of the literature and data collected for this study,four traditional alternatives,low-sulphur fuel,sulphur scrubbers/exhaust gas cleaning systems(EGCS),selective catalytic reduction(SCR),and exhaust gas recirculation,are analyzed.The analysis finds that switching to low-sulphur fuel is the best technical solution for SOx emission reduction,and the installation of SCR is the best technology for reducing nitrogen.In addition to traditional emission reduction technologies,the use of shore power facilities and liquefied natural gas(LNG),two alternatives welcomed by China’s green shipping industry,are also considered in this paper.The expected average abatement cost of these alternatives in the year 2030 are USD 2.866 billion,0.324 billion,1.071 billion,0.402 billion,0.232 billion and 0.34 billion,respectively.展开更多
Decarbonisation of power systems is essential for realising carbon neutrality,in which the economic cost caused by carbon needs to be qualified.Based on the formulation of locational marginal price(LMP),this paper pro...Decarbonisation of power systems is essential for realising carbon neutrality,in which the economic cost caused by carbon needs to be qualified.Based on the formulation of locational marginal price(LMP),this paper proposes a locational marginal electricity-carbon price(EC-LMP)model to reveal carbon-related costs caused by power consumers.A carbon-priceintegrated optimal power flow(C-OPF)is then developed to maximise economic efficiency of the power system considering the costs of electricity and carbon.Case studies are presented to demonstrate the new formulation and results demonstrate the efficacy of the EC-LMP-based C-OPF on decarbonisation and economy.展开更多
With the Kigali Amendment(KA)coming into effect in China,the control of hydrofuorocarbons(HFCs)emissions has become more imperative.The mobile air-conditioning(MAC)sector is one of the important HFCs consumer sectors,...With the Kigali Amendment(KA)coming into effect in China,the control of hydrofuorocarbons(HFCs)emissions has become more imperative.The mobile air-conditioning(MAC)sector is one of the important HFCs consumer sectors,and therefore studying its feasible mitigation paths and costs is of great significance to Chinas successful implementation of KA.This study used the bottom-up method with updated emission factors to re-evaluate the emission inventory of HFCs from the MAC sector in China from 2005 to 2020.The average annual growth rate of HFCs consumption in the MAC sector is 9.8%,and HFCs emissions have increased from 5.8(5.3-6.2)kt in 2005 to 22.2(20.6-23.8)kt in 2020,with an average annual growth rate of 8.8%.Using the Gompertz model combined with the Weibull function of vehicle survival rate,the ownership and new registrations of internal combustion engine vehicles(ICEVs)and electric vehicles(EVs)in China are predicted.The ownership of ICEVs and EVs is projected to be 310 million and 91 million in 2030,respectively and 2 million and 641 million in 2060,respectively.HFCs emissions in the MAC sector would reach 59.8(55.3-64.3)kt(80.093.0 Mt CO_(2-eq))in 2060 if without any control measure.To implement the KA,the cumulative of 1.6 Gt CO_(2-eq) emissions would be reduced.Under the other two accelerated mitigation scenarios,the MAC sector's HFCs will reach their emissions peak in 2028 and 2025 and achieve zero emissions in 2050 and 2046,respectively.Under the accelerated mitigation with recovery scenario,the cumulative emissions are only 15.0%of the business as usual(BAU)scenario.Using HFO-1234yf as the substitute,the unit abatement cost of the MAC sector is 27.3-37.4 USD _(t)^(-1)CO_(2-eq).展开更多
基金supported by the National Natural Sciences Foundation(Approval No.41201582)Beijing Natural Sciences Foundation(9152011)+1 种基金Mingde Scholars Program of Renmin University of China(Approval No.13XNJ016)Peking University-Lincoln Institute Center for Urban Development and Land Policy
文摘This paper investigates the marginal abatement cost (MAC) of CO: emissions across 104 Chinese cities between 2001 and 2008. Based on parametric directional distance function, this paper discovers that the mean marginal abatement cost of CO2 emissions for sample cities was 967 yuan/ton. In terms of region, CO: marginal abatement cost is significantly higher in China's eastern region than in central and western regions; in terms of provincial-level region, it is the highest in Shanghai and the lowest in Shaanxi in terms of city, it is the highest in Shanghai and the lowest in Zhangjiajie with the ratio between their medians being at 48:1; in terms of time, marginal abatement cost has been always on the rise with significant intercity disparities. There is a U-shaped curve relationship between marginal abatement cost of cities and CO2 emissions per unit of GDP, which is negatively correlated with the share of secondary industry and positively correlated with the level of urbanization.
基金support provided by the National Natural Science Foundation of China(nos.71804066&71625005)。
文摘The directional distance function(DDF)framework has been widely used to estimate the marginal abatement cost(MAC)of CO_(2)emissions to support decision-making in environmental sustainability and climate change issues.In the use of DDF,an important task is mapping evaluated entities towards a realistic production technology frontier.This study develops a new nonparametric approach for estimating the MAC of CO_(2)emissions.The approach incorporates the optimal endogenous direction into an enhanced environmental production technology and has three advantages.First,it avoids the arbitrariness in mapping directions.Second,it captures the heterogeneity in optimization paths across different decision-making units(DMUs).Third,it generates more reliable benchmarks for estimating MAC by constructing an environmental technology frontier that is consistent with the material balance principle.We apply the approach to study China's thermal power industry and find clear heterogeneity in MACs and optimization paths at the province level.The results on the optimal endogenous directions show that the DMUs prefer to increase both desirable output and CO_(2)emissions when CO_(2)emissions are unregulated.Comparisons with other approaches reveal that arbitrarily mapping exogenous directions and technology representations are likely to generate distorted and unrealistic MACs.
基金This study was supported by the Capital Blue Sky Action Cultivation Program of“Research on the Whole Process Control Technology of Pollution Sources in Industrial Parks and Research and Demonstration of Smart Environmental Protection Platforms”Project of Beijing Science and Technology Plan(Project No.Z191100009119010).
文摘For achieving air pollutant emission reduction targets,total pollutant amount control is being continuously promoted in China.However,the traditional pattern of pollutant emission reduction allocation regardless of economic cost often results in unreasonable emission reduction pathways,and industrial enterprises as the main implementers have to pay excessively high costs.Therefore,this study adopted economic efficiency as its main consideration,used specific emission reduction measures(ERMs)of industrial enterprises as minimum allocation units,and constructed an enterprise-level pollutant emission reduction allocation(EPERA)model with minimization of the total abatement cost(TAC)as the objective function,and fairness and feasibility as constraints for emission reduction allocation.Taking City M in China as an example,the EPERA model was used to construct a Pareto optimal frontier and obtain the optimal trade-off result.Results showed that under basic and strict emission reduction regulations,the TAC of the optimal trade-off point was reduced by 46.40%and 45.77%,respectively,in comparison with that achieved when only considering fairness,and the Gini coefficient was 0.26 and 0.31,respectively.The abatement target was attained with controllable cost and relatively fair and reasonable allocation.In addition,enterprises allocated different emission reduction quotas under different ERMs had specific characteristics that required targeted optimization of technology and equipment to enable them to achieve optimal emission reduction effects for the same abatement cost.
基金Financial supports from the National Natural Science Foundation of China(No.7197412472192833)the Institute of Eco-Chongming are greatly appreciated.
文摘After a decade of planning and trials,China officially launched a national carbon trading in July 2021.Using a standard economic model,this study shows that an unconstrained carbon trading market would face a dilemma between minimizing pollution control costs and maximizing social benefits.We further show that this would be a significant challenge in China.Our results show that areas with higher population densities also would have higher costs for carbon reduction,and hence the polluters in those areas would be net buyers in the national market.Moreover,our analysis indicates a significantly high correlation between carbon dioxide emissions and other local pollutants.Therefore,cross-regional transactions may result in more emission of other pollutants in areas with higher population density under the unconstrained national cap-and-trade system and cause larger losses in social benefits.We call for more studies to address the issue.
文摘Emission projection and marginal abatement cost curves(MACs) are the central components of any assessment of future carbon market, such as CDM (clean development mechanism) potentials, carbon quota price etc. However, they are products of very complex, dynamic systems driven by forces like population growth, economic development, resource endowments, technology progress and so on. The modeling approaches for emission projection and MACs evaluation were summarized, and some major models and their results were compared. Accordingly, reduction and cost requirements to achieve the Kyoto target were estimated. It is concluded that Annex I Parties' total reduction requirements range from 503—1304 MtC with USA participation and decrease significantly to 140—612 MtC after USA's withdrawal. Total costs vary from 21—77 BUSD with USA and from 5—36 BUSD without USA if only domestic reduction actions are taken. The costs would sharply reduce while considering the three flexible mechanisms defined in the Kyoto Protocol with domestic actions' share in the all mitigation strategies drops to only 0—16%.
基金supported by Beijing Natural Science Foundation(9154036)"Water Pollution Control Strategy and Decision Support Platform"[grant No.2009ZX07631-02-03]"Water Pollution Accident Damage Assessment Technology Research[grant No.201309060]"
文摘There are numerous studies comparing different kinds of environmental taxes and standards.However,forms of environmental standards focused by former researchers are usually quantitybased limits/standards(e.g.pounds per day or pounds per unit of output).Concentration-based emission standard(e.g.milligrams per liter of wastewater) as one important form of environmental standard has not been given much attention.In this article,comparable estimates of their probable effect on enterprise pollution reduction will be developed for concentrationbased effluent standards,effluent taxes,and a combination of both.A linear simulation model is used to clearly and obviously compare the effects of effluent taxes and concentration-based standards within the same figure.With one detailed application to the paper industry,some enlightenment and conclusions-as well as the general applicability of these principles-are then provided:Under the same effluent tax rate,enterprises,groups,and industries that are cleaner will reduce more pollutants than those that have higher pollutant abatement costs.It is recommended that effluent taxes are set by avoiding cutting it even at one stroke and considering the feasibility of pollution-reducing technology in various industries.It is necessary to reduce MAC of enterprises to better stimulate enterprises' or industries' emission reduction by preferential measures,such as high tax rate coordinated by speeding up the depreciation of environmental protection equipment.
基金The Second National Census of Pollution Sources Mobile Source Census Technical Specifications and Organization and Implementation(2018-033-B-021)。
文摘In order to control the air pollution caused by ships and improve ambient air quality,China set up three domestic emission control areas(DECAs)in 2015 in the Pearl River Delta,the Yangtze River Delta and Bohai Rim(Beijing-Tianjin-Hebei)waters.In order to meet the emission requirements established at the 70th meeting of the Marine Environmental Protection Committee(MEPC),China intends to apply for the establishment of three international Emission Control Area(ECA)in 2030 for these DECAs.This paper discusses existing technologies to reduce emissions of nitrogen oxides(NOx)and sulphur oxides(SOx),and examines the abatement costs for the shipping industry in the year 2030 to comply with this action.Based on an examination of the literature and data collected for this study,four traditional alternatives,low-sulphur fuel,sulphur scrubbers/exhaust gas cleaning systems(EGCS),selective catalytic reduction(SCR),and exhaust gas recirculation,are analyzed.The analysis finds that switching to low-sulphur fuel is the best technical solution for SOx emission reduction,and the installation of SCR is the best technology for reducing nitrogen.In addition to traditional emission reduction technologies,the use of shore power facilities and liquefied natural gas(LNG),two alternatives welcomed by China’s green shipping industry,are also considered in this paper.The expected average abatement cost of these alternatives in the year 2030 are USD 2.866 billion,0.324 billion,1.071 billion,0.402 billion,0.232 billion and 0.34 billion,respectively.
基金supported by the National Natural Science Foundation of China(U2166211).
文摘Decarbonisation of power systems is essential for realising carbon neutrality,in which the economic cost caused by carbon needs to be qualified.Based on the formulation of locational marginal price(LMP),this paper proposes a locational marginal electricity-carbon price(EC-LMP)model to reveal carbon-related costs caused by power consumers.A carbon-priceintegrated optimal power flow(C-OPF)is then developed to maximise economic efficiency of the power system considering the costs of electricity and carbon.Case studies are presented to demonstrate the new formulation and results demonstrate the efficacy of the EC-LMP-based C-OPF on decarbonisation and economy.
基金supported by the National Key R&D Program of China(2019YFC0214500)and the Energy Foundation Beijing Representative Office in China。
文摘With the Kigali Amendment(KA)coming into effect in China,the control of hydrofuorocarbons(HFCs)emissions has become more imperative.The mobile air-conditioning(MAC)sector is one of the important HFCs consumer sectors,and therefore studying its feasible mitigation paths and costs is of great significance to Chinas successful implementation of KA.This study used the bottom-up method with updated emission factors to re-evaluate the emission inventory of HFCs from the MAC sector in China from 2005 to 2020.The average annual growth rate of HFCs consumption in the MAC sector is 9.8%,and HFCs emissions have increased from 5.8(5.3-6.2)kt in 2005 to 22.2(20.6-23.8)kt in 2020,with an average annual growth rate of 8.8%.Using the Gompertz model combined with the Weibull function of vehicle survival rate,the ownership and new registrations of internal combustion engine vehicles(ICEVs)and electric vehicles(EVs)in China are predicted.The ownership of ICEVs and EVs is projected to be 310 million and 91 million in 2030,respectively and 2 million and 641 million in 2060,respectively.HFCs emissions in the MAC sector would reach 59.8(55.3-64.3)kt(80.093.0 Mt CO_(2-eq))in 2060 if without any control measure.To implement the KA,the cumulative of 1.6 Gt CO_(2-eq) emissions would be reduced.Under the other two accelerated mitigation scenarios,the MAC sector's HFCs will reach their emissions peak in 2028 and 2025 and achieve zero emissions in 2050 and 2046,respectively.Under the accelerated mitigation with recovery scenario,the cumulative emissions are only 15.0%of the business as usual(BAU)scenario.Using HFO-1234yf as the substitute,the unit abatement cost of the MAC sector is 27.3-37.4 USD _(t)^(-1)CO_(2-eq).