Multidrug Resistance Protein 2 (MRP2) is an ATP-dependent transmembrane protein that plays a pivotal role in the efflux of a wide variety of physiological substrates across the plasma membrane. Several studies have sh...Multidrug Resistance Protein 2 (MRP2) is an ATP-dependent transmembrane protein that plays a pivotal role in the efflux of a wide variety of physiological substrates across the plasma membrane. Several studies have shown that MRP2 can significantly affect the absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles of many therapeutic drugs and chemicals found in the environment and diet. This transporter can also efflux newly developed anticancer agents that target specific signaling pathways and are major clinical markers associated with multidrug resistance (MDR) of several types of cancers. MDR remains a major limitation to the advancement of the combinatorial chemotherapy regimen in cancer treatment. In addition to anticancer agents, MRP2 reduces the efficacy of various drug classes such as antivirals, antimalarials, and antibiotics. The unique role of MRP2 and its contribution to MDR makes it essential to profile drug-transporter interactions for all new and promising drugs. Thus, this current research seeks to identify modulators of MRP2 protein expression levels using cell-based assays. A unique recently approved FDA library (372 drugs) was screened using a high-throughput In-Cell ELISA assay to determine the effect of these therapeutic agents on protein expression levels of MRP2. A total of 49 FDA drugs altered MRP2 protein expression levels by more than 50% representing 13.17% of the compounds screened. Among the identified hits, thirty-nine (39) drugs increased protein expression levels whereas 10 drugs lowered protein expression levels of MRP2 after drug treatment. Our findings from this initial drug screening showed that modulators of MRP2 peregrinate multiple drug families and signify the importance of profiling drug interactions with this transporter. Data from this study provides essential information to improve combinatorial drug therapy and precision medicine as well as reduce the drug toxicity of various cancer chemotherapies.展开更多
文摘Multidrug Resistance Protein 2 (MRP2) is an ATP-dependent transmembrane protein that plays a pivotal role in the efflux of a wide variety of physiological substrates across the plasma membrane. Several studies have shown that MRP2 can significantly affect the absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles of many therapeutic drugs and chemicals found in the environment and diet. This transporter can also efflux newly developed anticancer agents that target specific signaling pathways and are major clinical markers associated with multidrug resistance (MDR) of several types of cancers. MDR remains a major limitation to the advancement of the combinatorial chemotherapy regimen in cancer treatment. In addition to anticancer agents, MRP2 reduces the efficacy of various drug classes such as antivirals, antimalarials, and antibiotics. The unique role of MRP2 and its contribution to MDR makes it essential to profile drug-transporter interactions for all new and promising drugs. Thus, this current research seeks to identify modulators of MRP2 protein expression levels using cell-based assays. A unique recently approved FDA library (372 drugs) was screened using a high-throughput In-Cell ELISA assay to determine the effect of these therapeutic agents on protein expression levels of MRP2. A total of 49 FDA drugs altered MRP2 protein expression levels by more than 50% representing 13.17% of the compounds screened. Among the identified hits, thirty-nine (39) drugs increased protein expression levels whereas 10 drugs lowered protein expression levels of MRP2 after drug treatment. Our findings from this initial drug screening showed that modulators of MRP2 peregrinate multiple drug families and signify the importance of profiling drug interactions with this transporter. Data from this study provides essential information to improve combinatorial drug therapy and precision medicine as well as reduce the drug toxicity of various cancer chemotherapies.