期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Transcriptome analysis reveals steroid hormones biosynthesis pathway involved in abdominal fat deposition in broilers
1
作者 Yuting Zhu Yongli Wang +3 位作者 Yidong Wang Guiping Zhao Jie Wen Huanxian Cui 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第9期3118-3128,共11页
Excessive abdominal fat deposition reduces the feed efficiency and increase the cost of production in broilers.Therefore,it is an important task for poultry breeders to breed broilers with low abdominal fat.Abdominal ... Excessive abdominal fat deposition reduces the feed efficiency and increase the cost of production in broilers.Therefore,it is an important task for poultry breeders to breed broilers with low abdominal fat.Abdominal fat deposition is a highly complex biological process,and its molecular basis remains elusive.In this study,we performed transcriptome analysis to compare gene expression profiles at different stages of abdominal fat deposition to identify the key genes and pathways involved in abdominal fat accumulation.We found that abdominal fat weight(AFW)increased gradually from day 35(D35)to 91(D91),and then decreased at day 119(D119).Accordingly,after detecting differentially expressed genes(DEGs)by comparing gene expression profiles at D35 vs.D63 and D35 vs.D91,and identifying gene modules associated with fat deposition by weighted gene co-expression network analysis(WGCNA),we performed intersection analysis of the detected DEGs and WGCNA gene modules and identified 394 and 435 intersecting genes,respectively.The results of the Gene Ontology(GO)functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analyses showed that the steroid hormone biosynthesis and insulin signaling pathways were co-enriched in all intersecting genes,steroid hormones have been shown that regulated insulin signaling pathway,indicating the importance of the steroid hormone biosynthesis pathway in the development of broiler abdominal fat.We then identified 6 hub genes(ACTB,SOX9,RHOBTB2,PDLIM3,NEDD9,and DOCK4)related to abdominal fat deposition.Further analysis also revealed that there were direct interactions between 6 hub genes.SOX9 has been shown to bind to proteins required for steroid hormone receptor binding,and RHOBTB2 indirectly regulates the steroid hormones biosynthesis through cyclin factor,and ultimately affect fat deposition.Our results suggest that the genes RHOBTB2 and SOX9 play an important role in fat deposition in broilers,by regulating steroid hormone synthesis.These findings provide new targets and directions for further studies on the mechanisms of fat deposition in chicken. 展开更多
关键词 BROILERS abdominal fat deposition transcriptome analysis hub genes steroid hormones biosynthesis pathway
下载PDF
CircDOCK7 facilitates the proliferation and adipogenic differentiation of chicken abdominal preadipocytes through the gga‑miR‑301b‑3p/ACSL1 axis 被引量:1
2
作者 Weihua Tian Ye Liu +5 位作者 Wenhui Zhang Ruixue Nie Yao Ling Bo Zhang Hao Zhang Changxin Wu 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第6期2290-2315,共26页
Background Abdominal fat deposition depends on both the proliferation of preadipocytes and their maturation into adipocytes,which is a well-orchestrated multistep process involving many regulatory molecules.Circular R... Background Abdominal fat deposition depends on both the proliferation of preadipocytes and their maturation into adipocytes,which is a well-orchestrated multistep process involving many regulatory molecules.Circular RNAs(circRNAs)have emergingly been implicated in mammalian adipogenesis.However,circRNA-mediated regulation in chicken adipogenesis remains unclear.Our previous circRNA sequencing data identified a differentially expressed novel circRNA,8:27,886,180|27,889,657,during the adipogenic differentiation of chicken abdominal preadipocytes.This study aimed to investigate the regulatory role of circDOCK7 in the proliferation and adipogenic differentiation of chicken abdominal preadipocytes,and explore its molecular mechanisms of competing endogenous RNA underlying chicken adipogenesis.Results Our results showed that 8:27,886,180|27,889,657 is an exonic circRNA derived from the head-to-tail splicing of exons 19–22 of the dedicator of cytokinesis 7(DOCK7)gene,abbreviated as circDOCK7.CircDOCK7 is mainly distributed in the cytoplasm of chicken abdominal preadipocytes and is stable because of its RNase R resistance and longer half-life.CircDOCK7 is significantly upregulated in the abdominal fat tissues of fat chickens compared to lean chickens,and its expression gradually increases during the proliferation and adipogenic differentiation of chicken abdominal preadipocytes.Functionally,the gain-and loss-of-function experiments showed that circDOCK7 promoted proliferation,G0/G1-to S-phase progression,and glucose uptake capacity of chicken abdominal preadipocytes,in parallel with adipogenic differentiation characterized by remarkably increased intracellular lipid droplet accumulation and triglyceride and acetyl coenzyme A content in differentiated chicken abdominal preadipocytes.Mechanistically,a pull-down assay and a dual-luciferase reporter assay confirmed that circDOCK7 interacted with gga-miR-301b-3p,which was identified as an inhibitor of chicken abdominal adipogenesis.Moreover,the ACSL1 gene was demonstrated to be a direct target of gga-miR-301b-3p.Chicken ACSL1 protein is localized in the endoplasmic reticulum and mitochondria of chicken abdominal preadipocytes and acts as an adipogenesis accelerator.Rescue experiments showed that circDOCK7 could counteract the inhibitory effects of gga-miR-301b-3p on ACSL1 mRNA abundance as well as the proliferation and adipogenic differentiation of chicken abdominal preadipocytes.Conclusions CircDOCK7 serves as a miRNA sponge that directly sequesters gga-miR-301b-3p away from the ACSL1 gene,thus augmenting adipogenesis in chickens.These findings may elucidate a new regulatory mechanism underlying abdominal fat deposition in chickens. 展开更多
关键词 abdominal fat deposition ADIPOGENESIS CHICKENS CircDOCK7 Competing endogenous RNA MiRNA sponge
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部