This editorial describes the indications and technical aspects of the simultaneous retrieval of thoracic and abdominal organs in Maastricht III donors as well as the preservation of such organs until their implantation.
Abdominal organ segmentation is the segregation of a single or multiple abdominal organ(s) into semantic image segments of pixels identified with homogeneous features such as color and texture, and intensity. The abdo...Abdominal organ segmentation is the segregation of a single or multiple abdominal organ(s) into semantic image segments of pixels identified with homogeneous features such as color and texture, and intensity. The abdominal organ(s) condition is mostly connected with greater morbidity and mortality. Most patients often have asymptomatic abdominal conditions and symptoms, which are often recognized late;hence the abdomen has been the third most common cause of damage to the human body. That notwithstanding,there may be improved outcomes where the condition of an abdominal organ is detected earlier. Over the years, supervised and semi-supervised machine learning methods have been used to segment abdominal organ(s) in order to detect the organ(s) condition. The supervised methods perform well when the used training data represents the target data, but the methods require large manually annotated data and have adaptation problems. The semi-supervised methods are fast but record poor performance than the supervised if assumptions about the data fail to hold. Current state-of-the-art methods of supervised segmentation are largely based on deep learning techniques due to their good accuracy and success in real world applications. Though it requires a large amount of training data for automatic feature extraction, deep learning can hardly be used. As regards the semi-supervised methods of segmentation, self-training and graph-based techniques have attracted much research attention. Self-training can be used with any classifier but does not have a mechanism to rectify mistakes early. Graph-based techniques thrive on their convexity, scalability, and effectiveness in application but have an out-of-sample problem. In this review paper, a study has been carried out on supervised and semi-supervised methods of performing abdominal organ segmentation. An observation of the current approaches, connection and gaps are identified, and prospective future research opportunities are enumerated.展开更多
文摘This editorial describes the indications and technical aspects of the simultaneous retrieval of thoracic and abdominal organs in Maastricht III donors as well as the preservation of such organs until their implantation.
基金supported by National Natural Science Foundation of China(Nos.61772242,61976106 and 61572239)the China Postdoctoral Science Foundation(No.2017M611737)+1 种基金the Six Talent Peaks Project in Jiangsu Province(No.DZXX-122)the Key Special Project of Health and Family Planning Science and Technology in Zhenjiang City(No.SHW2017019)。
文摘Abdominal organ segmentation is the segregation of a single or multiple abdominal organ(s) into semantic image segments of pixels identified with homogeneous features such as color and texture, and intensity. The abdominal organ(s) condition is mostly connected with greater morbidity and mortality. Most patients often have asymptomatic abdominal conditions and symptoms, which are often recognized late;hence the abdomen has been the third most common cause of damage to the human body. That notwithstanding,there may be improved outcomes where the condition of an abdominal organ is detected earlier. Over the years, supervised and semi-supervised machine learning methods have been used to segment abdominal organ(s) in order to detect the organ(s) condition. The supervised methods perform well when the used training data represents the target data, but the methods require large manually annotated data and have adaptation problems. The semi-supervised methods are fast but record poor performance than the supervised if assumptions about the data fail to hold. Current state-of-the-art methods of supervised segmentation are largely based on deep learning techniques due to their good accuracy and success in real world applications. Though it requires a large amount of training data for automatic feature extraction, deep learning can hardly be used. As regards the semi-supervised methods of segmentation, self-training and graph-based techniques have attracted much research attention. Self-training can be used with any classifier but does not have a mechanism to rectify mistakes early. Graph-based techniques thrive on their convexity, scalability, and effectiveness in application but have an out-of-sample problem. In this review paper, a study has been carried out on supervised and semi-supervised methods of performing abdominal organ segmentation. An observation of the current approaches, connection and gaps are identified, and prospective future research opportunities are enumerated.