Paper considers the calculation of the values of Gibbs derivatives on finite Abelian groups. The calculation procedure is based upon the decision diagram representation of functions defined on finite Abelian groups. A...Paper considers the calculation of the values of Gibbs derivatives on finite Abelian groups. The calculation procedure is based upon the decision diagram representation of functions defined on finite Abelian groups. Approach permits processing of large functions.展开更多
Canonical differential calculi are defined for finitely generated Abelian groups with involutions existing consistently. Two such the canonical calculi are presented. Fermionic representations for canonical calculi ar...Canonical differential calculi are defined for finitely generated Abelian groups with involutions existing consistently. Two such the canonical calculi are presented. Fermionic representations for canonical calculi are defined based on quantized calculi. Fermionic representations for aforementioned two canonical calculi are searched out.展开更多
Some dynamical properties were discussed for additive cellular automata(CA)over finite abelian groups.These properties include surjection,ergodicity,sensitivity to initial conditions and positive expansivity.Some nece...Some dynamical properties were discussed for additive cellular automata(CA)over finite abelian groups.These properties include surjection,ergodicity,sensitivity to initial conditions and positive expansivity.Some necessary and sufficient conditions of determining ergodicity and sensitivity of the above additive CA were presented,respectively.A necessary condition for the positive expansivity of the above additive CA was given.The positive expansivity was proved to be preserved under the shift mappings for the general CA.The discussion was mainly based on the structure theorem of the finite abelian groups and the matrix associated with the global rule of the additive CA over the finite abelian p-groups.展开更多
A finite group is said to be weakly separable if every algebraic isomorphism between two 5-rings over this group is induced by a combinatorial isomorphism.We prove that every abelian weakly separable group only belong...A finite group is said to be weakly separable if every algebraic isomorphism between two 5-rings over this group is induced by a combinatorial isomorphism.We prove that every abelian weakly separable group only belongs to one of several explicitly given families.展开更多
Let the arithmetic function a(n) denote the number of non-isomorphic Abeliangroups of order n;k, positive integer, and x≥0. We setA_k(x)= sum from n≤x a(n)=k to (1)andA_k(x;h) =A_k(x+h)-A_k(x). A. Ivice first invest...Let the arithmetic function a(n) denote the number of non-isomorphic Abeliangroups of order n;k, positive integer, and x≥0. We setA_k(x)= sum from n≤x a(n)=k to (1)andA_k(x;h) =A_k(x+h)-A_k(x). A. Ivice first investigated the distribution of the values of finite non-isomorphicAbelian groups in short intervals. E. Kratzel reduced the problem to estimate theerror term △(1, 2, 3;x) in the three-dimensional multiplicative problem, and furtherimproved Ivice’s result.展开更多
Let t(G) be the number of unitary factors of finite abelian group G. In this paper we prove T(x)=∑<sub>(</sub>G≤()t(G) =main terms+O(x<sup>(</sup>(1+2k)/(3+4k)for any exponent pa...Let t(G) be the number of unitary factors of finite abelian group G. In this paper we prove T(x)=∑<sub>(</sub>G≤()t(G) =main terms+O(x<sup>(</sup>(1+2k)/(3+4k)for any exponent pair (k, 1/2+2K). which improves on the exponent 9/25 obtained by Xiaodong Cao and the author.展开更多
The quotient space of a K3 surface by a finite group is an Enriques surface or a rational surface if it is smooth.Finite groups where the quotient space are Enriques surfaces are known.In this paper,by analyzing effec...The quotient space of a K3 surface by a finite group is an Enriques surface or a rational surface if it is smooth.Finite groups where the quotient space are Enriques surfaces are known.In this paper,by analyzing effective divisors on smooth rational surfaces,the author will study finite groups which act faithfully on K3 surfaces such that the quotient space are smooth.In particular,he will completely determine effective divisors on Hirzebruch surfaces such that there is a finite Abelian cover from a K3 surface to a Hirzebrunch surface such that the branch divisor is that effective divisor.Furthermore,he will decide the Galois group and give the way to construct that Abelian cover from an effective divisor on a Hirzebruch surface.Subsequently,he studies the same theme for Enriques surfaces.展开更多
Let F be a locally defined formation consisting of locally solvable groups, G a hyper-( cyclic or finite) locally solvable group and A a noetherian ZG-module with all irreducible ZG-factors being finite. The followi...Let F be a locally defined formation consisting of locally solvable groups, G a hyper-( cyclic or finite) locally solvable group and A a noetherian ZG-module with all irreducible ZG-factors being finite. The following conclusion is obtained: if G∈F, f( ∞ ) include f(p), f(p) ≠φ for each p∈π, and A has no nonzero F central ZG- images, then any extension E of A by G splits conjugately over A, and A has no nonzero F central ZG-factors.展开更多
In order to answer a question motivated by constructing substitution boxes in block ciphers we will exhibit an infinite family of full-rank factorizations of elementary 2-groups into two factors having equal sizes.
we have discussed structures of Abelian group G by order |A(G) |of automoorphism group and have obtained all types of finite Abelian grooup G when the order of A(G) equals 27pq(p,q are odd primmes).
In this paper,we present the concept of Banach-mean equicontinuity and prove that the Banach-,Weyl-and Besicovitch-mean equicontinuities of a dynamic system of Abelian group action are equivalent.Furthermore,we obtain...In this paper,we present the concept of Banach-mean equicontinuity and prove that the Banach-,Weyl-and Besicovitch-mean equicontinuities of a dynamic system of Abelian group action are equivalent.Furthermore,we obtain that the topological entropy of a transitive,almost Banach-mean equicontinuous dynamical system of Abelian group action is zero.As an application of our main result,we show that the topological entropy of the Banach-mean equicontinuous system under the action of an Abelian groups is zero.展开更多
In this paper, we prove that if a torsion nilpotent group G is a weak semi-radicable group, then every Sylow p-group Gp is a central-by-finite p-group, and moreover Gp's center ζ(GP) satisfies |ζ(GP) : (ζ(GP))P...In this paper, we prove that if a torsion nilpotent group G is a weak semi-radicable group, then every Sylow p-group Gp is a central-by-finite p-group, and moreover Gp's center ζ(GP) satisfies |ζ(GP) : (ζ(GP))P| <∞, that is, ζ(GP) = D×F, where D is a divisible Abelian group, and F is a finite Abelian group.展开更多
As recounted in this paper, the idea of groups is one that has evolved from some very intuitive concepts. We can do binary operations like adding or multiplying two elements and also binary operations like taking the ...As recounted in this paper, the idea of groups is one that has evolved from some very intuitive concepts. We can do binary operations like adding or multiplying two elements and also binary operations like taking the square root of an element (in this case the result is not always in the set). In this paper, we aim to find the operations and actions of Lie groups on manifolds. These actions can be applied to the matrix group and Bi-invariant forms of Lie groups and to generalize the eigenvalues and eigenfunctions of differential operators on R<sup>n</sup>. A Lie group is a group as well as differentiable manifold, with the property that the group operations are compatible with the smooth structure on which group manipulations, product and inverse, are distinct. It plays an extremely important role in the theory of fiber bundles and also finds vast applications in physics. It represents the best-developed theory of continuous symmetry of mathematical objects and structures, which makes them indispensable tools for many parts of contemporary mathematics, as well as for modern theoretical physics. Here we did work flat out to represent the mathematical aspects of Lie groups on manifolds.展开更多
The current method of solving first order indefinite equatio n is changing the equation to first order indefinite equation gr oup to solve. But according this method, if variables are very many, it will be difficul...The current method of solving first order indefinite equatio n is changing the equation to first order indefinite equation gr oup to solve. But according this method, if variables are very many, it will be difficult to solve the equation using the current method. In this paper, it prov ides a simple method by discussing the structure of solution based on the theory of free abelian group. In addition, this method makes it easy to get the genera lized solution of the equation using the computer.展开更多
Staggered formalism of lattice fermion can be cast into a form of direct product K-cycle in noncommutative geometry. We prove the correspondence between this staggered K-cycle and a canonically defined K-cycle for fin...Staggered formalism of lattice fermion can be cast into a form of direct product K-cycle in noncommutative geometry. We prove the correspondence between this staggered K-cycle and a canonically defined K-cycle for finitely generated Abelian groups where a lattice appears as a special case.展开更多
In this paper we prove that for any prime power q equivalent to 3 (mod 8) there exist 4 - {q(2); k, k, k, k; lambda} supplementary difference sets (SDSs) with k = q(q - 1)/2, lambda 4k - q(2), and Hadamard matrices of...In this paper we prove that for any prime power q equivalent to 3 (mod 8) there exist 4 - {q(2); k, k, k, k; lambda} supplementary difference sets (SDSs) with k = q(q - 1)/2, lambda 4k - q(2), and Hadamard matrices of order 4q(2), and give several constructions of these SDSs. Moreover, combining the results of reference [1], we conclude that for any prime p equivalent to 3 (mod 8) and integer r greater than or equal to 1 there exists an Hadamard matrix of order 4p(2r).展开更多
The classical countable summation type Hahn-Schur theorem is a famous result in summation theory and measure theory. An interesting problem is whether the theorem can be generalized to non-countable summation case? In...The classical countable summation type Hahn-Schur theorem is a famous result in summation theory and measure theory. An interesting problem is whether the theorem can be generalized to non-countable summation case? In this paper, we show that the answer is true.展开更多
文摘Paper considers the calculation of the values of Gibbs derivatives on finite Abelian groups. The calculation procedure is based upon the decision diagram representation of functions defined on finite Abelian groups. Approach permits processing of large functions.
基金Climb-Up (Pan Deng) Project of Department of Science and Technology of China,国家自然科学基金,Doctoral Programme Foundation of Institution of Higher Education of China
文摘Canonical differential calculi are defined for finitely generated Abelian groups with involutions existing consistently. Two such the canonical calculi are presented. Fermionic representations for canonical calculi are defined based on quantized calculi. Fermionic representations for aforementioned two canonical calculi are searched out.
基金National Natural Science Foundation of China(No.11671258)。
文摘Some dynamical properties were discussed for additive cellular automata(CA)over finite abelian groups.These properties include surjection,ergodicity,sensitivity to initial conditions and positive expansivity.Some necessary and sufficient conditions of determining ergodicity and sensitivity of the above additive CA were presented,respectively.A necessary condition for the positive expansivity of the above additive CA was given.The positive expansivity was proved to be preserved under the shift mappings for the general CA.The discussion was mainly based on the structure theorem of the finite abelian groups and the matrix associated with the global rule of the additive CA over the finite abelian p-groups.
基金Supported by the Russian Foundation for Basic Research(project 18-01-00752).
文摘A finite group is said to be weakly separable if every algebraic isomorphism between two 5-rings over this group is induced by a combinatorial isomorphism.We prove that every abelian weakly separable group only belongs to one of several explicitly given families.
文摘Let the arithmetic function a(n) denote the number of non-isomorphic Abeliangroups of order n;k, positive integer, and x≥0. We setA_k(x)= sum from n≤x a(n)=k to (1)andA_k(x;h) =A_k(x+h)-A_k(x). A. Ivice first investigated the distribution of the values of finite non-isomorphicAbelian groups in short intervals. E. Kratzel reduced the problem to estimate theerror term △(1, 2, 3;x) in the three-dimensional multiplicative problem, and furtherimproved Ivice’s result.
基金Supported by MCME and Natural Science Foundation of Shandong Province(Grant No. Q98A02110)
文摘Let t(G) be the number of unitary factors of finite abelian group G. In this paper we prove T(x)=∑<sub>(</sub>G≤()t(G) =main terms+O(x<sup>(</sup>(1+2k)/(3+4k)for any exponent pair (k, 1/2+2K). which improves on the exponent 9/25 obtained by Xiaodong Cao and the author.
文摘The quotient space of a K3 surface by a finite group is an Enriques surface or a rational surface if it is smooth.Finite groups where the quotient space are Enriques surfaces are known.In this paper,by analyzing effective divisors on smooth rational surfaces,the author will study finite groups which act faithfully on K3 surfaces such that the quotient space are smooth.In particular,he will completely determine effective divisors on Hirzebruch surfaces such that there is a finite Abelian cover from a K3 surface to a Hirzebrunch surface such that the branch divisor is that effective divisor.Furthermore,he will decide the Galois group and give the way to construct that Abelian cover from an effective divisor on a Hirzebruch surface.Subsequently,he studies the same theme for Enriques surfaces.
文摘Let F be a locally defined formation consisting of locally solvable groups, G a hyper-( cyclic or finite) locally solvable group and A a noetherian ZG-module with all irreducible ZG-factors being finite. The following conclusion is obtained: if G∈F, f( ∞ ) include f(p), f(p) ≠φ for each p∈π, and A has no nonzero F central ZG- images, then any extension E of A by G splits conjugately over A, and A has no nonzero F central ZG-factors.
文摘In order to answer a question motivated by constructing substitution boxes in block ciphers we will exhibit an infinite family of full-rank factorizations of elementary 2-groups into two factors having equal sizes.
文摘we have discussed structures of Abelian group G by order |A(G) |of automoorphism group and have obtained all types of finite Abelian grooup G when the order of A(G) equals 27pq(p,q are odd primmes).
基金supported by NSF of China(11671057)NSF of Chongqing(cstc2020jcyj-msxmX0694)the Fundamental Research Funds for the Central Universities(2018CDQYST0023).
文摘In this paper,we present the concept of Banach-mean equicontinuity and prove that the Banach-,Weyl-and Besicovitch-mean equicontinuities of a dynamic system of Abelian group action are equivalent.Furthermore,we obtain that the topological entropy of a transitive,almost Banach-mean equicontinuous dynamical system of Abelian group action is zero.As an application of our main result,we show that the topological entropy of the Banach-mean equicontinuous system under the action of an Abelian groups is zero.
文摘In this paper, we prove that if a torsion nilpotent group G is a weak semi-radicable group, then every Sylow p-group Gp is a central-by-finite p-group, and moreover Gp's center ζ(GP) satisfies |ζ(GP) : (ζ(GP))P| <∞, that is, ζ(GP) = D×F, where D is a divisible Abelian group, and F is a finite Abelian group.
文摘As recounted in this paper, the idea of groups is one that has evolved from some very intuitive concepts. We can do binary operations like adding or multiplying two elements and also binary operations like taking the square root of an element (in this case the result is not always in the set). In this paper, we aim to find the operations and actions of Lie groups on manifolds. These actions can be applied to the matrix group and Bi-invariant forms of Lie groups and to generalize the eigenvalues and eigenfunctions of differential operators on R<sup>n</sup>. A Lie group is a group as well as differentiable manifold, with the property that the group operations are compatible with the smooth structure on which group manipulations, product and inverse, are distinct. It plays an extremely important role in the theory of fiber bundles and also finds vast applications in physics. It represents the best-developed theory of continuous symmetry of mathematical objects and structures, which makes them indispensable tools for many parts of contemporary mathematics, as well as for modern theoretical physics. Here we did work flat out to represent the mathematical aspects of Lie groups on manifolds.
文摘The current method of solving first order indefinite equatio n is changing the equation to first order indefinite equation gr oup to solve. But according this method, if variables are very many, it will be difficult to solve the equation using the current method. In this paper, it prov ides a simple method by discussing the structure of solution based on the theory of free abelian group. In addition, this method makes it easy to get the genera lized solution of the equation using the computer.
文摘Staggered formalism of lattice fermion can be cast into a form of direct product K-cycle in noncommutative geometry. We prove the correspondence between this staggered K-cycle and a canonically defined K-cycle for finitely generated Abelian groups where a lattice appears as a special case.
文摘In this paper we prove that for any prime power q equivalent to 3 (mod 8) there exist 4 - {q(2); k, k, k, k; lambda} supplementary difference sets (SDSs) with k = q(q - 1)/2, lambda 4k - q(2), and Hadamard matrices of order 4q(2), and give several constructions of these SDSs. Moreover, combining the results of reference [1], we conclude that for any prime p equivalent to 3 (mod 8) and integer r greater than or equal to 1 there exists an Hadamard matrix of order 4p(2r).
基金Supported by Research Fund of Kumoh National Institute of Technology(M1100)
文摘The classical countable summation type Hahn-Schur theorem is a famous result in summation theory and measure theory. An interesting problem is whether the theorem can be generalized to non-countable summation case? In this paper, we show that the answer is true.