Woody plants contribute to the stability and productivity of terrestrial ecosystems and are significantly affected by climate change.According to the concept of environmental hormesis,any environmental stressors can c...Woody plants contribute to the stability and productivity of terrestrial ecosystems and are significantly affected by climate change.According to the concept of environmental hormesis,any environmental stressors can cause hormesis,that is,stimulation in low doses and inhibition in high doses.Numerous studies have demonstrated plant hormesis under low doses of various abiotic stressors.However,the hormetic responses of woody plants to abiotic stressors from climate change are insufficiently studied.This review analyses data on the stimulating effects of low doses of climate stressors in experiments and in real ecosystems.Numerous laboratory and field experiments show that single and combined exposure to various climate stressors(temperature,humidity,and elevated carbon dioxide concentrations) can cause hormesis in various species and functional types of woody plants,which can be accompanied by hormetic trade-offs and preconditioning.In addition,there is evidence of climate hormesis in woody plants in ecosystem conditions.Field experiments in various ecosystems show that elevated temperatures and/or precipitation or elevated carbon dioxide concentrations causing hormesis in dominant tree species can stimulate ecosystem productivity.Moreover,climate hormesis of the growth and reproduction of dominant forest tree species contributes to the spread of forests,that is,climate-driven ecological succession.The main commonalities of climate hormesis in woody species include:(1) Low-dose climate stressors cause hormesis in woody plants when strong(limiting) stressors do not affect plants or these limiting stressors are mitigated by climate change.(2) Hormesis can occur with the direct impact of climatic stressors on trees and with the indirect impact of these stressors on plants through other parts of the ecosystem.(3)Climate stressor interactions(e.g.,synergism,antagonism)can affect hormesis.(4) Hormesis may disappear due to tree acclimatization with consequent changes in the range of tolerances to climate factors.This review highlights the need for targeted studies of climate hormesis in woody species and its role in the adaptation of forest ecosystems to climate change.展开更多
Heat shock transcription factors(Hsfs)have important roles during plant growth and development and responses to abiotic stresses.The identification and func-tion of Hsf genes have been thoroughly studied in various he...Heat shock transcription factors(Hsfs)have important roles during plant growth and development and responses to abiotic stresses.The identification and func-tion of Hsf genes have been thoroughly studied in various herbaceous plant species,but not woody species,especially Phoebe bournei,an endangered,unique species in China.In this study,17 members of the Hsf gene family were identi-fied from P.bournei using bioinformatic methods.Phyloge-netic analysis indicated that PbHsf genes were grouped into three subfamilies:A,B,and C.Conserved motifs,three-dimensional structure,and physicochemical properties of the PbHsf proteins were also analyzed.The structure of the PbHsf genes varied in the number of exons and introns.Pre-diction of cis-acting elements in the promoter region indi-cated that PbHsf genes are likely involved in responses to plant hormones and stresses.A collinearity analysis dem-onstrated that expansions of the PbHsf gene family mainly take place via segmental duplication.The expression levels of PbHsf genes varied across different plant tissues.On the basis of the expression profiles of five representative PbHsf genes during heat,cold,salt,and drought stress,PbHsf pro-teins seem to have multiple functions depending on the type of abiotic stress.This systematic,genome-wide investigation of PbHsf genes in P.bournei and their expression patterns provides valuable insights and information for further func-tional dissection of Hsf proteins in this endangered,unique species.展开更多
Plant calmodulins(CaMs)and calmodulin-like proteins(CMLs)mediate Ca~(2+)signaling in response to abiotic stresses.Manipulation of this signaling in crops could increase stress tolerance.We review methods for detecting...Plant calmodulins(CaMs)and calmodulin-like proteins(CMLs)mediate Ca~(2+)signaling in response to abiotic stresses.Manipulation of this signaling in crops could increase stress tolerance.We review methods for detecting Ca~(2+)signals,regulatory roles of Ca Ms and CMLs,binding targets,and Ca~(2+)networks under abiotic stress in organelles.展开更多
Pineapple,a popular tropical fruit with diverse culinary and health applications,has gained significant attention due to its economic importance,health benefits,and scientific exploration.Abiotic stress has been shown to...Pineapple,a popular tropical fruit with diverse culinary and health applications,has gained significant attention due to its economic importance,health benefits,and scientific exploration.Abiotic stress has been shown to have detrimental effects on physiological aspects of pineapple,such as photosynthesis rate and internal browning.However,physical and physiological parameters are inadequate in providing accurate assessment,early detection,and enabling marker-assisted breeding for pineapple under abiotic stress.Genetic markers provide valuable insights into plant defense mechanisms and stress tolerance,enabling the identification of key genes and pathways involved.The aim of this review was to discuss the potential of genetic markers as a reliable tool for studying abiotic stress in pineapple.It focuses on genes involved in stress response and their utility as genetic markers,while also discussing physiological changes.The responsiveness of several gene families,including CPK,CBL,CYS,Dof,TALE,SBP,WRKY,ZIP,R2R3-MYB,and DREB,to abiotic stress has been known before.Therefore,harnessing the potential of these genes can yield valuable insights for comprehending and effectively managing abiotic stress in pineapple.A comprehensive understanding of the genetic response to abiotic stress in pineapple is essential for enhancing agricultural productivity and developing stress-resistant varieties.展开更多
Abiotic and biotic stressors adversely affect plant survival,biomass generation,and crop yields.As the global availability of arable land declines and the impacts of global warming intensify,such stressors may have in...Abiotic and biotic stressors adversely affect plant survival,biomass generation,and crop yields.As the global availability of arable land declines and the impacts of global warming intensify,such stressors may have increasingly pronounced effects on agricultural productivity.Currently,researchers face the overarching challenge of comprehensively enhancing plant resilience to abiotic and biotic stressors.The secondary cell wall plays a crucial role in bolstering the stress resistance of plants.To increase plant resistance to stress through genetic manipulation of the secondary cell wall,we cloned a cell wall protein designated glycine-rich protein-like(GhGRPL)from cotton fibers,and found that it is specifically expressed during the period of secondary cell wall biosynthesis.Notably,this protein differs from its Arabidopsis homolog,AtGRP,since its glycine-rich domain is deficient in glycine residues.GhGRPL is involved in secondary cell wall deposition.Upregulation of GhGRPL enhances lignin accumulation and,consequently,the thickness of the secondary cell walls,thereby increasing the plant’s resistance to abiotic stressors,such as drought and salinity,and biotic threats,including Verticillium dahliae infection.Conversely,interference with GhGRPL expression in cotton reduces lignin accumulation and compromises that resistance.Taken together,our findings elucidate the role of GhGRPL in regulating secondary cell wall development through its influence on lignin deposition,which,in turn,reinforces cell wall robustness and impermeability.These findings highlight the promising near-future prospect of adopting GhGRPL as a viable,effective approach for enhancing plant resilience to abiotic and biotic stress factors.展开更多
Gamma-aminobutyric acid(GABA),widely existing in different organisms,is rapidly accumulated in plants in response to environmental stresses.The main biosynthesis and degradation pathways of GABA constitute the GABA sh...Gamma-aminobutyric acid(GABA),widely existing in different organisms,is rapidly accumulated in plants in response to environmental stresses.The main biosynthesis and degradation pathways of GABA constitute the GABA shunt,which is tied to the tricarboxylic acid(TCA)cycle.GABA transaminase(GABA-T)and succinate semialdehyde dehydrogenase(SSADH)are two essential enzymes for the GABA degradation pathway.While there are abundant studies on GABA shunt in higher plants at the physiological and genetic levels,research on its role in microalgae remains limited.This study aimed at exploring the function of GABA-T and SSADH genes in Isochrysis zhanjiangensis,an important diet microalga,under different stresses.We cloned two GABA-T genes,IzGABA-T1 and IzGABA-T2,and one SSADH gene IzSSADH from Isochrysis zhanjiangensis and conducted heterologous expression experiments.The results showed that the overexpression of IzGABA-T1 or IzGABA-T2 enhanced the survival rates of yeast transformants under heat or NaCl stress,while the overexpression of IzSSADH improved yeast tolerance to NaCl stress but had no obvious effect on heat stress.Additionally,the results of quantitative real-time polymerase chain reaction(qPCR)showed that IzGABA-T1 transcription increased in the HT(salinity 25,35℃)and LS(salinity 15,25℃)groups.At 24 h,the IzGABA-T2 transcriptions increased in the HT,LS,and HS(salinity 35,25℃)groups,but their transcription levels decreased in all groups at 48 h.IzSSADH transcription increased in the LS group.These results suggest that IzGABA-T1,IzGABA-T2,and IzSSADH are associated with temperature and salinity stresses and possess a certain preference for different stresses.展开更多
Melatonin is a conserved pleiotropic molecule in animals and plants.Melatonin is involved in many development processes and stress responses;thus,exploring its function in plants,particularly in horticultural plants,h...Melatonin is a conserved pleiotropic molecule in animals and plants.Melatonin is involved in many development processes and stress responses;thus,exploring its function in plants,particularly in horticultural plants,has become a rapidly developing field.Many studies have revealed that phytomelatonin acts as a plant biostimulant and increase its tolerance to various abiotic stressors,including extreme temperature,drought,osmotic disturbance,heavy metals,and ultraviolet(UV).Melatonin appears to have roles in the scavenging of reactive oxygen species(ROS)and other free radicals,affecting the primary and secondary metabolism of plants,regulating the transcripts of stress-related enzymes and transcription factors,and crosstalk with other hormones under different environmental conditions.This pleiotropy makes phytomelatonin an attractive regulator to improve resistance to abiotic stress in plants.The recent discovery of the potential phytomelatonin receptor CAND2/PMTR1 and the proposition of putative models related to the phytomelatonin signaling pathways makes phytomelatonin a new plant hormone.Based on relevant studies from our laboratory,this review summarizes the phytomelatonin biosynthetic and metabolic pathways in plants and the latest research progress on phytomelatonin in abiotic stress of horticultural plants.This study will provide a reference for elucidating the regulatory mechanism of phytomelatonin affecting the resistance to abiotic stress in plants.展开更多
Variations in the nutrients and water that plants require for metabolism,development,and the maintenance of cellular homeostasis are the main causes of abiotic stress in plants.It has,however,hardly ever been studied ...Variations in the nutrients and water that plants require for metabolism,development,and the maintenance of cellular homeostasis are the main causes of abiotic stress in plants.It has,however,hardly ever been studied how these transporter proteins,such as aquaporin which is responsible for food and water intake in cell plasma mem-branes,interact with one another.This review aims to explore the interactions between nutrient transporters and aquaporins during water and nutrient uptake.It also investigates how symbiotic relationships influence the plant genome’s responses to regulatory processes such as photoperiodism,senescence,and nitrogenfixation.These responses are observed in reaction to various abiotic stresses.For instance,plasma membrane transporters are upregulated during macronutrient insufficiency,tonoplast transporters are overexpressed,and aquaporins are downregulated in micronutrient deficiency.Additionally,tolerant plants often exhibit increased expression of nutrient transporters and aquaporins in response to drought,salt,and cold temperatures.To better comprehend plant stress tolerance to abiotic challenges including starvation,K famine,salt,and freezing temperatures,both classes of nutrient and water transporters should be considered at the same time.展开更多
Genes in the glycogen synthase kinase 3(GSK3)family are essential in regulating plant response to stressful conditions.This study employed bioinformatics to uncover the GSK3 gene family from the sunflower genome datab...Genes in the glycogen synthase kinase 3(GSK3)family are essential in regulating plant response to stressful conditions.This study employed bioinformatics to uncover the GSK3 gene family from the sunflower genome database.The expressions of GSK3 genes in different tissues and stress treatments,such as salt,drought,and cold,were assessed using transcriptome sequencing and quantitative real-time PCR(qRT-PCR).The study results revealed that the 12 GSK3 genes of sunflower,belonging to four classes(Classes I–IV),contained the GSK3 kinase domain and 11–13 exons.The majority of GSK3 genes were highly expressed in the leaf axil and flower,while their expression levels were relatively lower in the leaf.As a result of salt stress,six of the GSK3 genes(HaSK11,HaSK22,HaSK23,HaSK32,HaSK33,and HaSK41)displayed a notable increase in expression,while HaSK14 and HaSK21 experienced a significant decrease.With regard to drought stress,five of the GSK3 genes(HaSK11,HaSK13,HaSK21,HaSK22,and HaSK33)experienced a remarkable rise in expression.When exposed to cold stress,seven of the GSK3 genes(HaSK11,HaSK12,HaSK13,HaSK32,HaSK33,HaSK41,and HaSK42)showed a substantial increase,whereas HaSK21 and HaSK23 had a sharp decline.This research is of great importance in understanding the abiotic resistance mechanism of sunflowers and developing new varieties with improved stress resistance.展开更多
In crop plants, various environmental stresses affect the balance of carbon, nitrogen, and phosphorus(C:N:P), leading to biochemical and physiological alterations and reductions in yield. Silicon(Si) is a beneficial e...In crop plants, various environmental stresses affect the balance of carbon, nitrogen, and phosphorus(C:N:P), leading to biochemical and physiological alterations and reductions in yield. Silicon(Si) is a beneficial element that alleviates plant stress. Most studies involving silicon have focused on physiological responses, such as improvements in photosynthetic processes, water use efficiency, and antioxidant defense systems. But recent research suggests that stressed plants facing either limited or excessive resources(water, light, nutrients, and toxic elements), strategically employ Si to maintain C:N:P homeostasis, thereby minimizing biomass losses. Understanding the role of Si in mitigating the impact of abiotic stresses on plants by regulating C:N:P homeostasis holds great potential for advancing sustainable agricultural practices in crop production. This review presents recent advances in characterizing the influence of environmental stresses on C:N:P homeostasis, as well as the role of Si in preserving C:N:P equilibrium and attenuating biological damage associated with abiotic stress. It underscores the beneficial effects of Si in sustaining C:N:P homeostasis and increasing yield via improved nutritional efficiency and stress mitigation.展开更多
Soil salinization is the main factor that threatens the growth and development of plants and limits the increase of yield.It is of great significance to study the key soil environmental factors affecting plant root tr...Soil salinization is the main factor that threatens the growth and development of plants and limits the increase of yield.It is of great significance to study the key soil environmental factors affecting plant root traits to reveal the adaptation strategies of plants to saline-alkaline-stressed soil environments.In this study,the root biomass,root morphological parameters and root mineral nutrient content of two alfalfa cultivars with different sensitivities to alkaline stress were analyzed with black soil as the control group and the mixed saline-alkaline soil with a ratio of 7:3 between black soil and saline-alkaline soil as the saline-alkaline treatment group.At the same time,the correlation analysis of soil salinity indexes,soil nutrient indexes and the activities of key enzymes involved in soil carbon,nitrogen and phosphorus cycles was carried out.The results showed that compared with the control group,the pH,EC,and urease(URE)of the soil surrounding the roots of two alfalfa cultivars were significantly increased,while soil total nitrogen(TN),total phosphorus(TP),organic carbon(SOC),andα-glucosidase activity(AGC)were significantly decreased under saline-alkaline stress.There was no significant difference in root biomass and root morphological parameters of saline-alkaline tolerant cultivar GN under saline-alkaline stress.The number of root tips(RT),root surface area(RS)and root volume(RV)of AG were reduced by 61.16%,44.54%,and 45.31%,respectively,compared with control group.The ratios of K^(+)/Na^(+),Ca^(2+)/Na^(+)and Mg^(2+)/Na^(+)of GN were significantly higher than those of AG(p<0.05).The root fresh weight(RFW)and dry weight(RDW),root length(RL),RV and RT of alfalfa were positively regulated by soil SOC and TN,but negatively regulated by soil pH,EC,and URE(p<0.01).Root Ca^(2+)/Na+ratio was significantly positively correlated with soil TN,TP and SOC(p<0.01).The absorption of Mg and Ca ions in roots is significantly negatively regulated by soilβ-glucosidase activity(BGC)and acid phosphatase activity(APC)(p<0.05).This study improved knowledge of the relationship between root traits and soil environmental factors and offered a theoretical framework for elucidating how plant roots adapt to saline-alkaline stressed soil environments.展开更多
As a pest, in order to complete its life history and reproduces effectively, soybean cyst nematode (SCN) (Heterodera glycines Ichinche 1952) must adapt to various environments and conditions for long periods of ev...As a pest, in order to complete its life history and reproduces effectively, soybean cyst nematode (SCN) (Heterodera glycines Ichinche 1952) must adapt to various environments and conditions for long periods of evolution. The nematode is widely dispersed year after year. Controlling this pest requires understanding characters and adaptability of SCN. Effects of abiotic factors, such as temperature, soil humidity, agrotype, pH value, ions, plant exudates, agricultural chemical and cultivation systems on SCN, are reviewed in this paper. The results show that SCN is able to endure various environmental stresses, especially low temperature. Because of its special life history, cyst stage help SCN over winter, resistance of SCN to environmental stress is strong. A few studies have reported the mechanism of SCN environmental adaptability. We emphasized the importance of studying environmental adaptability of SCN, which would benefit the control of SCN by ecological means.展开更多
Current hypothesis of neuronal degeneration in Parkinson's disease (PD) have been proposed, including formation of free radicals and oxidative stress, mitochondrial dysfunction, excitotoxicity, trophic factor defic...Current hypothesis of neuronal degeneration in Parkinson's disease (PD) have been proposed, including formation of free radicals and oxidative stress, mitochondrial dysfunction, excitotoxicity, trophic factor deficiency, inflammatory processes, genetic factors, environmental impact factors, toxic action of nitric oxide, apoptosis, and so on. This review mainly discussed oxidative stress, environmental impact factors, and inflammatory processes in PD.展开更多
By mRNA differential display from control versus NaCl_shocked Arabidopsis seedlings, we screened an Arabidopsis 3′ partial cDNA, which represents a gene encoding inositol 1,3,4_trisphosphate (Ins(1,3,4)P ...By mRNA differential display from control versus NaCl_shocked Arabidopsis seedlings, we screened an Arabidopsis 3′ partial cDNA, which represents a gene encoding inositol 1,3,4_trisphosphate (Ins(1,3,4)P 3) 5/6_kinase_like protein. Northern blotting analysis showed that the gene, named as AtITL1, is strongly induced by NaCl and low temperature, but not induced by drought and abscisic acid (ABA). Analysis of 5′ region of the AtITL1 found that there are dehydration_responsive element/C_repeat (DRE/CRT) cis _acting elements, but no elements related to G_box and ABRE (ABA_responsive element) in its 5′ region, which is consistent with the expression patterns of the AtITL1 independent of ABA. These results suggest that the AtITL1 may be involved in the osmotic stress response pathway independent of ABA.展开更多
[Objective] This study was to reveal the heat induced expression model of RcLEA gene and its tolerance to various abiotic stresses.[Method] Heat resistant and heat sensitive varieties of Rosa hybrida L.were subjected ...[Objective] This study was to reveal the heat induced expression model of RcLEA gene and its tolerance to various abiotic stresses.[Method] Heat resistant and heat sensitive varieties of Rosa hybrida L.were subjected to heat shock treatment at 38 ℃ for 3 h;then RcLEA gene from both varieties treated was cloned and transformed into Escherichia coli strain BL21;finally recombinant colonies were separately cultured at 4 ℃ and 50 ℃ under the stresses of LiCl,NaCl,Na2CO3,CdCl2 and H2O2 to study the responses of recombinant E.coli strains to high temperature,low temperature and some other abiotic stresses.[Result] After heat shock treatment at 38 ℃ for 3 h,RcLEA gene expressed highly in 'Schloss mannieim'(SM)and 'Las vegas'(LV)variety,but weakly or even not expressed in 'Kordes' Perfecta'(KP),indicating that this gene is closely related with heat resistance of R.hybrida.Compared with WT strains,recombinant clones showed higher tolerance to abiotic stresses including high temperature,low temperature,heavy metal,high salt,high pH value and oxidation,suggesting that RcLEA is concerned with the response of R.hybrida to abiotic stresses mentioned above.[Conclusion] These results provide thoughts for increasing heat resistance by introducing RcLEA into heat sensitive R.hybrida varieties and studying the heat-resistant mechanism of R.hybrida,and also provide theoretical support for selecting heat resistant variety of landscape and ornamental plants like R.hybrida.展开更多
Current hypothesis of neuronal degeneration in Parkinson’s disease (PD) have been proposed, including formation of free radicals and oxidative stress, mitochondrial dysfunction, excitotoxicity, trophic factor deficie...Current hypothesis of neuronal degeneration in Parkinson’s disease (PD) have been proposed, including formation of free radicals and oxidative stress, mitochondrial dysfunction, excitotoxicity, trophic factor deficiency, inflam- matory processes, genetic factors, environmental impact factors, toxic action of nitric oxide, apoptosis, and so on. This review mainly discussed oxidative stress, environmental impact factors, and inflammatory processes in PD.展开更多
Alzheimer s disease,among the most common neurodegenerative disorders,is chara cterized by progressive cognitive impairment.At present,the Alzheimer’s disease main risk remains genetic ris ks,but major environmental ...Alzheimer s disease,among the most common neurodegenerative disorders,is chara cterized by progressive cognitive impairment.At present,the Alzheimer’s disease main risk remains genetic ris ks,but major environmental fa ctors are increasingly shown to impact Alzheimer’s disease development and progression.Microglia,the most important brain immune cells,play a central role in Alzheimer’s disease pathogenesis and are considered environmental and lifestyle"sensors."Factors like environmental pollution and modern lifestyles(e.g.,chronic stress,poor dietary habits,sleep,and circadian rhythm disorde rs)can cause neuroinflammato ry responses that lead to cognitive impairment via microglial functioning and phenotypic regulation.However,the specific mechanisms underlying interactions among these facto rs and microglia in Alzheimer’s disease are unclear.Herein,we:discuss the biological effects of air pollution,chronic stress,gut micro biota,sleep patterns,physical exercise,cigarette smoking,and caffeine consumption on microglia;consider how unhealthy lifestyle factors influence individual susceptibility to Alzheimer’s disease;and present the neuroprotective effects of a healthy lifestyle.Toward intervening and controlling these environmental risk fa ctors at an early Alzheimer’s disease stage,understanding the role of microglia in Alzheimer’s disease development,and to rgeting strategies to to rget microglia,co uld be essential to future Alzheimer’s disease treatments.展开更多
Abiotic stresses including drought,salinity,heat,cold,flooding,and ultraviolet radiation causes crop losses worldwide.In recent times,preventing these crop losses and producing more food and feed to meet the demands o...Abiotic stresses including drought,salinity,heat,cold,flooding,and ultraviolet radiation causes crop losses worldwide.In recent times,preventing these crop losses and producing more food and feed to meet the demands of ever-increasing human populations have gained unprecedented importance.However,the proportion of agricultural lands facing multiple abiotic stresses is expected only to rise under a changing global climate fueled by anthropogenic activities.Identifying the mechanisms developed and deployed by plants to counteract abiotic stresses and maintain their growth and survival under harsh conditions thus holds great significance.Recent investigations have shown that phytohormones,including the classical auxins,cytokinins,ethylene,and gibberellins,and newer members including brassinosteroids,jasmonates,and strigolactones may prove to be important metabolic engineering targets for producing abiotic stress-tolerant crop plants.In this review,we summarize and critically assess the roles that phytohormones play in plant growth and development and abiotic stress tolerance,besides their engineering for conferring abiotic stress tolerance in transgenic crops.We also describe recent successes in identifying the roles of phytohormones under stressful conditions.We conclude by describing the recent progress and future prospects including limitations and challenges of phytohormone engineering for inducing abiotic stress tolerance in crop plants.展开更多
NAC family genes encode plant-specific transcription factors involved in diverse biological processes. In this study, the Arabidopsis NAC gene ATAF1 was found to be induced by drought, high-salinity, abscisic acid (...NAC family genes encode plant-specific transcription factors involved in diverse biological processes. In this study, the Arabidopsis NAC gene ATAF1 was found to be induced by drought, high-salinity, abscisic acid (ABA), methyl jasmonate, mechanical wounding, and Botrytis cinerea infection. Significant induction of ATAF1 was found in an ABA-deficient mutant aba2 subjected to drought or high salinity, revealing an ABA-independent mechanism of expression. Arabidopsis ATAFl-overexpression lines displayed many altered phenotypes, including dwarfism and short primary roots. Furthermore, in vivo experiments indicate that ATAF1 is a bonafide regulator modulating plant responses to many abiotic stresses and necrotrophic-pathogen infection. Overexpression of ATAF1 in Arabidopsis increased plant sensitivity to ABA, salt, and oxidative stresses. Especially, ATAF1 overexpression plants, but not mutant lines, showed remarkably enhanced plant tolerance to drought. Additionally, ATAF1 overexpression enhanced plant susceptibility to the necrotrophic pathogen B. cinerea, but did not alter disease symptoms caused by avirulent or virulent strains of P. syringae pv tomato DC3000. Transgenic plants overexpressing ATAF1 were hypersensitive to oxidative stress, suggesting that reactive oxygen intermediates may be related to ATAFl-mediated signaling in response to both pathogen and abiotic stresses.展开更多
CBF/DREB proteins play a critical role in abiotic stress-mediated gene expression and represent attractive regulons for plant breeding programs.However,no study has been conducted for CBF/DREB protein-related genes in...CBF/DREB proteins play a critical role in abiotic stress-mediated gene expression and represent attractive regulons for plant breeding programs.However,no study has been conducted for CBF/DREB protein-related genes in jujube(Ziziphus jujuba Mill.).In this study,twenty-five ZjDREB genes were identified and annotated from the jujube(Z.jujuba‘Dongzao’)genome.Detailed analysis,including gene classification,annotation,phylogenetic evaluation,conserved motif determination and expression profiling were performed on all genes.Phylogenetic analysis showed that ZjDREB proteins were divided into five subgroups(A1–A5),but lacking a subgroup A6 corresponding to AtDREBs.The ZjDREB genes were distributed in nine of twelve chromosomes in the genome.Additionally,the expression patterns of the DREB genes under different abiotic stresses were investigated using q RT-PCR.Nineteen ZjDREB genes were down-regulated under low temperature,in contrast six ZjDREB genes(01,03,05,11,23 and 24)were up-regulated.Under drought,salinity and high temperature conditions,expression of ZjDREB03,09,10,14,15,17 and 20 genes were induced and showed similar expression patterns,suggesting that various stress conditions share common elements in the signaling pathway.The results suggest that the family of DREB genes play an important role in abiotic stresses in jujube,and provide a foundation for further functional studies of this important class of transcriptional regulators.展开更多
文摘Woody plants contribute to the stability and productivity of terrestrial ecosystems and are significantly affected by climate change.According to the concept of environmental hormesis,any environmental stressors can cause hormesis,that is,stimulation in low doses and inhibition in high doses.Numerous studies have demonstrated plant hormesis under low doses of various abiotic stressors.However,the hormetic responses of woody plants to abiotic stressors from climate change are insufficiently studied.This review analyses data on the stimulating effects of low doses of climate stressors in experiments and in real ecosystems.Numerous laboratory and field experiments show that single and combined exposure to various climate stressors(temperature,humidity,and elevated carbon dioxide concentrations) can cause hormesis in various species and functional types of woody plants,which can be accompanied by hormetic trade-offs and preconditioning.In addition,there is evidence of climate hormesis in woody plants in ecosystem conditions.Field experiments in various ecosystems show that elevated temperatures and/or precipitation or elevated carbon dioxide concentrations causing hormesis in dominant tree species can stimulate ecosystem productivity.Moreover,climate hormesis of the growth and reproduction of dominant forest tree species contributes to the spread of forests,that is,climate-driven ecological succession.The main commonalities of climate hormesis in woody species include:(1) Low-dose climate stressors cause hormesis in woody plants when strong(limiting) stressors do not affect plants or these limiting stressors are mitigated by climate change.(2) Hormesis can occur with the direct impact of climatic stressors on trees and with the indirect impact of these stressors on plants through other parts of the ecosystem.(3)Climate stressor interactions(e.g.,synergism,antagonism)can affect hormesis.(4) Hormesis may disappear due to tree acclimatization with consequent changes in the range of tolerances to climate factors.This review highlights the need for targeted studies of climate hormesis in woody species and its role in the adaptation of forest ecosystems to climate change.
基金supported by the Fujian Province Seed Industry Innovation and Industrialization Project“Innovation and Industrialization Development of Precious Tree Seed Industries(Phoebe bornei)”(ZYCX-LY-202102)the Sub-project of National Key R&D Program“Phoebe bornei Efficient Cultivation Technology”(2016YFD0600603-2).
文摘Heat shock transcription factors(Hsfs)have important roles during plant growth and development and responses to abiotic stresses.The identification and func-tion of Hsf genes have been thoroughly studied in various herbaceous plant species,but not woody species,especially Phoebe bournei,an endangered,unique species in China.In this study,17 members of the Hsf gene family were identi-fied from P.bournei using bioinformatic methods.Phyloge-netic analysis indicated that PbHsf genes were grouped into three subfamilies:A,B,and C.Conserved motifs,three-dimensional structure,and physicochemical properties of the PbHsf proteins were also analyzed.The structure of the PbHsf genes varied in the number of exons and introns.Pre-diction of cis-acting elements in the promoter region indi-cated that PbHsf genes are likely involved in responses to plant hormones and stresses.A collinearity analysis dem-onstrated that expansions of the PbHsf gene family mainly take place via segmental duplication.The expression levels of PbHsf genes varied across different plant tissues.On the basis of the expression profiles of five representative PbHsf genes during heat,cold,salt,and drought stress,PbHsf pro-teins seem to have multiple functions depending on the type of abiotic stress.This systematic,genome-wide investigation of PbHsf genes in P.bournei and their expression patterns provides valuable insights and information for further func-tional dissection of Hsf proteins in this endangered,unique species.
基金supported by the National Science Foundation of China (32171941,31571583)。
文摘Plant calmodulins(CaMs)and calmodulin-like proteins(CMLs)mediate Ca~(2+)signaling in response to abiotic stresses.Manipulation of this signaling in crops could increase stress tolerance.We review methods for detecting Ca~(2+)signals,regulatory roles of Ca Ms and CMLs,binding targets,and Ca~(2+)networks under abiotic stress in organelles.
基金the Directorate General of Research and Development Strengthening and Ministries of Research,Technology and Higher Education of the Republic of Indonesia(009/SP2H/LT/DRPM/2019)for generousfinancial support our work.
文摘Pineapple,a popular tropical fruit with diverse culinary and health applications,has gained significant attention due to its economic importance,health benefits,and scientific exploration.Abiotic stress has been shown to have detrimental effects on physiological aspects of pineapple,such as photosynthesis rate and internal browning.However,physical and physiological parameters are inadequate in providing accurate assessment,early detection,and enabling marker-assisted breeding for pineapple under abiotic stress.Genetic markers provide valuable insights into plant defense mechanisms and stress tolerance,enabling the identification of key genes and pathways involved.The aim of this review was to discuss the potential of genetic markers as a reliable tool for studying abiotic stress in pineapple.It focuses on genes involved in stress response and their utility as genetic markers,while also discussing physiological changes.The responsiveness of several gene families,including CPK,CBL,CYS,Dof,TALE,SBP,WRKY,ZIP,R2R3-MYB,and DREB,to abiotic stress has been known before.Therefore,harnessing the potential of these genes can yield valuable insights for comprehending and effectively managing abiotic stress in pineapple.A comprehensive understanding of the genetic response to abiotic stress in pineapple is essential for enhancing agricultural productivity and developing stress-resistant varieties.
基金supported by the Special Fund for the Youth Team of the Southwest Universities,China(SWUXJPY 202306)the Fundamental Research Funds for the Central Universities,China(SWU-KR23009)the National Natural Sciences Foundation of China(U2003209 and 31871539)。
文摘Abiotic and biotic stressors adversely affect plant survival,biomass generation,and crop yields.As the global availability of arable land declines and the impacts of global warming intensify,such stressors may have increasingly pronounced effects on agricultural productivity.Currently,researchers face the overarching challenge of comprehensively enhancing plant resilience to abiotic and biotic stressors.The secondary cell wall plays a crucial role in bolstering the stress resistance of plants.To increase plant resistance to stress through genetic manipulation of the secondary cell wall,we cloned a cell wall protein designated glycine-rich protein-like(GhGRPL)from cotton fibers,and found that it is specifically expressed during the period of secondary cell wall biosynthesis.Notably,this protein differs from its Arabidopsis homolog,AtGRP,since its glycine-rich domain is deficient in glycine residues.GhGRPL is involved in secondary cell wall deposition.Upregulation of GhGRPL enhances lignin accumulation and,consequently,the thickness of the secondary cell walls,thereby increasing the plant’s resistance to abiotic stressors,such as drought and salinity,and biotic threats,including Verticillium dahliae infection.Conversely,interference with GhGRPL expression in cotton reduces lignin accumulation and compromises that resistance.Taken together,our findings elucidate the role of GhGRPL in regulating secondary cell wall development through its influence on lignin deposition,which,in turn,reinforces cell wall robustness and impermeability.These findings highlight the promising near-future prospect of adopting GhGRPL as a viable,effective approach for enhancing plant resilience to abiotic and biotic stress factors.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(No.LY22C190001)the Natural Science Foundation of Ningbo Government(No.2021J114)+3 种基金the Ningbo Science and Technology Research Projects,China(No.2019B10006)the Zhejiang Provincial Department of Education Scientific Research Project(No.Y202249030)the Earmarked Fund for CARS-49partly sponsored by K.C.Wong Magna Fund in Ningbo University.
文摘Gamma-aminobutyric acid(GABA),widely existing in different organisms,is rapidly accumulated in plants in response to environmental stresses.The main biosynthesis and degradation pathways of GABA constitute the GABA shunt,which is tied to the tricarboxylic acid(TCA)cycle.GABA transaminase(GABA-T)and succinate semialdehyde dehydrogenase(SSADH)are two essential enzymes for the GABA degradation pathway.While there are abundant studies on GABA shunt in higher plants at the physiological and genetic levels,research on its role in microalgae remains limited.This study aimed at exploring the function of GABA-T and SSADH genes in Isochrysis zhanjiangensis,an important diet microalga,under different stresses.We cloned two GABA-T genes,IzGABA-T1 and IzGABA-T2,and one SSADH gene IzSSADH from Isochrysis zhanjiangensis and conducted heterologous expression experiments.The results showed that the overexpression of IzGABA-T1 or IzGABA-T2 enhanced the survival rates of yeast transformants under heat or NaCl stress,while the overexpression of IzSSADH improved yeast tolerance to NaCl stress but had no obvious effect on heat stress.Additionally,the results of quantitative real-time polymerase chain reaction(qPCR)showed that IzGABA-T1 transcription increased in the HT(salinity 25,35℃)and LS(salinity 15,25℃)groups.At 24 h,the IzGABA-T2 transcriptions increased in the HT,LS,and HS(salinity 35,25℃)groups,but their transcription levels decreased in all groups at 48 h.IzSSADH transcription increased in the LS group.These results suggest that IzGABA-T1,IzGABA-T2,and IzSSADH are associated with temperature and salinity stresses and possess a certain preference for different stresses.
基金supported by the grants from National Natural Science Foundation of China(Grant Nos.32172598,32172599)Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(Grant No.320LH013)+1 种基金the Construction of Beijing Science and Technology Innovation and Service Capacity in Top Subjects(Grant No.CEFF-PXM2019-014207-000032)Beijing Agriculture Innovation Consortium(Grant No.BAIC01-2024).
文摘Melatonin is a conserved pleiotropic molecule in animals and plants.Melatonin is involved in many development processes and stress responses;thus,exploring its function in plants,particularly in horticultural plants,has become a rapidly developing field.Many studies have revealed that phytomelatonin acts as a plant biostimulant and increase its tolerance to various abiotic stressors,including extreme temperature,drought,osmotic disturbance,heavy metals,and ultraviolet(UV).Melatonin appears to have roles in the scavenging of reactive oxygen species(ROS)and other free radicals,affecting the primary and secondary metabolism of plants,regulating the transcripts of stress-related enzymes and transcription factors,and crosstalk with other hormones under different environmental conditions.This pleiotropy makes phytomelatonin an attractive regulator to improve resistance to abiotic stress in plants.The recent discovery of the potential phytomelatonin receptor CAND2/PMTR1 and the proposition of putative models related to the phytomelatonin signaling pathways makes phytomelatonin a new plant hormone.Based on relevant studies from our laboratory,this review summarizes the phytomelatonin biosynthetic and metabolic pathways in plants and the latest research progress on phytomelatonin in abiotic stress of horticultural plants.This study will provide a reference for elucidating the regulatory mechanism of phytomelatonin affecting the resistance to abiotic stress in plants.
基金supported by the Natural Science Foundation of Jiangsu Higher Education Institutions of China(23KJA210003)the Open Project Program of Joint International Research Laboratory of Agriculture and Agri-Product Safety,the Ministry of Education of China,Yangzhou University(JILAR-KF202202).
文摘Variations in the nutrients and water that plants require for metabolism,development,and the maintenance of cellular homeostasis are the main causes of abiotic stress in plants.It has,however,hardly ever been studied how these transporter proteins,such as aquaporin which is responsible for food and water intake in cell plasma mem-branes,interact with one another.This review aims to explore the interactions between nutrient transporters and aquaporins during water and nutrient uptake.It also investigates how symbiotic relationships influence the plant genome’s responses to regulatory processes such as photoperiodism,senescence,and nitrogenfixation.These responses are observed in reaction to various abiotic stresses.For instance,plasma membrane transporters are upregulated during macronutrient insufficiency,tonoplast transporters are overexpressed,and aquaporins are downregulated in micronutrient deficiency.Additionally,tolerant plants often exhibit increased expression of nutrient transporters and aquaporins in response to drought,salt,and cold temperatures.To better comprehend plant stress tolerance to abiotic challenges including starvation,K famine,salt,and freezing temperatures,both classes of nutrient and water transporters should be considered at the same time.
基金financed by the Anhui Provincial Central Leading Local Science and Technology Development Special Fund Project(202007d06020021)Project of Suzhou Science and Technology Bureau(2021143).
文摘Genes in the glycogen synthase kinase 3(GSK3)family are essential in regulating plant response to stressful conditions.This study employed bioinformatics to uncover the GSK3 gene family from the sunflower genome database.The expressions of GSK3 genes in different tissues and stress treatments,such as salt,drought,and cold,were assessed using transcriptome sequencing and quantitative real-time PCR(qRT-PCR).The study results revealed that the 12 GSK3 genes of sunflower,belonging to four classes(Classes I–IV),contained the GSK3 kinase domain and 11–13 exons.The majority of GSK3 genes were highly expressed in the leaf axil and flower,while their expression levels were relatively lower in the leaf.As a result of salt stress,six of the GSK3 genes(HaSK11,HaSK22,HaSK23,HaSK32,HaSK33,and HaSK41)displayed a notable increase in expression,while HaSK14 and HaSK21 experienced a significant decrease.With regard to drought stress,five of the GSK3 genes(HaSK11,HaSK13,HaSK21,HaSK22,and HaSK33)experienced a remarkable rise in expression.When exposed to cold stress,seven of the GSK3 genes(HaSK11,HaSK12,HaSK13,HaSK32,HaSK33,HaSK41,and HaSK42)showed a substantial increase,whereas HaSK21 and HaSK23 had a sharp decline.This research is of great importance in understanding the abiotic resistance mechanism of sunflowers and developing new varieties with improved stress resistance.
基金The support of the S?o Paulo State University (UNESP)。
文摘In crop plants, various environmental stresses affect the balance of carbon, nitrogen, and phosphorus(C:N:P), leading to biochemical and physiological alterations and reductions in yield. Silicon(Si) is a beneficial element that alleviates plant stress. Most studies involving silicon have focused on physiological responses, such as improvements in photosynthetic processes, water use efficiency, and antioxidant defense systems. But recent research suggests that stressed plants facing either limited or excessive resources(water, light, nutrients, and toxic elements), strategically employ Si to maintain C:N:P homeostasis, thereby minimizing biomass losses. Understanding the role of Si in mitigating the impact of abiotic stresses on plants by regulating C:N:P homeostasis holds great potential for advancing sustainable agricultural practices in crop production. This review presents recent advances in characterizing the influence of environmental stresses on C:N:P homeostasis, as well as the role of Si in preserving C:N:P equilibrium and attenuating biological damage associated with abiotic stress. It underscores the beneficial effects of Si in sustaining C:N:P homeostasis and increasing yield via improved nutritional efficiency and stress mitigation.
基金the Agricultural Science and Technology Innovation Project of Jilin Province(Postdoctoral Fund Project)(CXGC2021RCB007)Agricultural Science and Technology Innovation Project of Jilin Province(Introduction of Doctor and High-Level Talents Project)(CXGC2022RCG008)+1 种基金Jilin Province Science and Technology Development Project(20200403014SF)Agricultural Science and Technology Innovation Project of Jilin Province(CXGC2021ZY036).
文摘Soil salinization is the main factor that threatens the growth and development of plants and limits the increase of yield.It is of great significance to study the key soil environmental factors affecting plant root traits to reveal the adaptation strategies of plants to saline-alkaline-stressed soil environments.In this study,the root biomass,root morphological parameters and root mineral nutrient content of two alfalfa cultivars with different sensitivities to alkaline stress were analyzed with black soil as the control group and the mixed saline-alkaline soil with a ratio of 7:3 between black soil and saline-alkaline soil as the saline-alkaline treatment group.At the same time,the correlation analysis of soil salinity indexes,soil nutrient indexes and the activities of key enzymes involved in soil carbon,nitrogen and phosphorus cycles was carried out.The results showed that compared with the control group,the pH,EC,and urease(URE)of the soil surrounding the roots of two alfalfa cultivars were significantly increased,while soil total nitrogen(TN),total phosphorus(TP),organic carbon(SOC),andα-glucosidase activity(AGC)were significantly decreased under saline-alkaline stress.There was no significant difference in root biomass and root morphological parameters of saline-alkaline tolerant cultivar GN under saline-alkaline stress.The number of root tips(RT),root surface area(RS)and root volume(RV)of AG were reduced by 61.16%,44.54%,and 45.31%,respectively,compared with control group.The ratios of K^(+)/Na^(+),Ca^(2+)/Na^(+)and Mg^(2+)/Na^(+)of GN were significantly higher than those of AG(p<0.05).The root fresh weight(RFW)and dry weight(RDW),root length(RL),RV and RT of alfalfa were positively regulated by soil SOC and TN,but negatively regulated by soil pH,EC,and URE(p<0.01).Root Ca^(2+)/Na+ratio was significantly positively correlated with soil TN,TP and SOC(p<0.01).The absorption of Mg and Ca ions in roots is significantly negatively regulated by soilβ-glucosidase activity(BGC)and acid phosphatase activity(APC)(p<0.05).This study improved knowledge of the relationship between root traits and soil environmental factors and offered a theoretical framework for elucidating how plant roots adapt to saline-alkaline stressed soil environments.
基金supported by a grant from the National Technology System of Modern Agricultural Industry, China.
文摘As a pest, in order to complete its life history and reproduces effectively, soybean cyst nematode (SCN) (Heterodera glycines Ichinche 1952) must adapt to various environments and conditions for long periods of evolution. The nematode is widely dispersed year after year. Controlling this pest requires understanding characters and adaptability of SCN. Effects of abiotic factors, such as temperature, soil humidity, agrotype, pH value, ions, plant exudates, agricultural chemical and cultivation systems on SCN, are reviewed in this paper. The results show that SCN is able to endure various environmental stresses, especially low temperature. Because of its special life history, cyst stage help SCN over winter, resistance of SCN to environmental stress is strong. A few studies have reported the mechanism of SCN environmental adaptability. We emphasized the importance of studying environmental adaptability of SCN, which would benefit the control of SCN by ecological means.
文摘Current hypothesis of neuronal degeneration in Parkinson's disease (PD) have been proposed, including formation of free radicals and oxidative stress, mitochondrial dysfunction, excitotoxicity, trophic factor deficiency, inflammatory processes, genetic factors, environmental impact factors, toxic action of nitric oxide, apoptosis, and so on. This review mainly discussed oxidative stress, environmental impact factors, and inflammatory processes in PD.
文摘By mRNA differential display from control versus NaCl_shocked Arabidopsis seedlings, we screened an Arabidopsis 3′ partial cDNA, which represents a gene encoding inositol 1,3,4_trisphosphate (Ins(1,3,4)P 3) 5/6_kinase_like protein. Northern blotting analysis showed that the gene, named as AtITL1, is strongly induced by NaCl and low temperature, but not induced by drought and abscisic acid (ABA). Analysis of 5′ region of the AtITL1 found that there are dehydration_responsive element/C_repeat (DRE/CRT) cis _acting elements, but no elements related to G_box and ABRE (ABA_responsive element) in its 5′ region, which is consistent with the expression patterns of the AtITL1 independent of ABA. These results suggest that the AtITL1 may be involved in the osmotic stress response pathway independent of ABA.
基金Supported by Key Scientific and Technological Project for Developing Agriculture from Shanghai Municipal Agriculture Commission(200810-4)~~
文摘[Objective] This study was to reveal the heat induced expression model of RcLEA gene and its tolerance to various abiotic stresses.[Method] Heat resistant and heat sensitive varieties of Rosa hybrida L.were subjected to heat shock treatment at 38 ℃ for 3 h;then RcLEA gene from both varieties treated was cloned and transformed into Escherichia coli strain BL21;finally recombinant colonies were separately cultured at 4 ℃ and 50 ℃ under the stresses of LiCl,NaCl,Na2CO3,CdCl2 and H2O2 to study the responses of recombinant E.coli strains to high temperature,low temperature and some other abiotic stresses.[Result] After heat shock treatment at 38 ℃ for 3 h,RcLEA gene expressed highly in 'Schloss mannieim'(SM)and 'Las vegas'(LV)variety,but weakly or even not expressed in 'Kordes' Perfecta'(KP),indicating that this gene is closely related with heat resistance of R.hybrida.Compared with WT strains,recombinant clones showed higher tolerance to abiotic stresses including high temperature,low temperature,heavy metal,high salt,high pH value and oxidation,suggesting that RcLEA is concerned with the response of R.hybrida to abiotic stresses mentioned above.[Conclusion] These results provide thoughts for increasing heat resistance by introducing RcLEA into heat sensitive R.hybrida varieties and studying the heat-resistant mechanism of R.hybrida,and also provide theoretical support for selecting heat resistant variety of landscape and ornamental plants like R.hybrida.
文摘Current hypothesis of neuronal degeneration in Parkinson’s disease (PD) have been proposed, including formation of free radicals and oxidative stress, mitochondrial dysfunction, excitotoxicity, trophic factor deficiency, inflam- matory processes, genetic factors, environmental impact factors, toxic action of nitric oxide, apoptosis, and so on. This review mainly discussed oxidative stress, environmental impact factors, and inflammatory processes in PD.
基金supported by the National Natural Science Foundation of China,Nos.82071190 and 82371438(to LC)Innovative Strong School Project of Guangdong Medical University,No.4SG21230G(to LC)Scientific Research Foundation of Guangdong Medical University,No.GDMUM2020017(to CL)。
文摘Alzheimer s disease,among the most common neurodegenerative disorders,is chara cterized by progressive cognitive impairment.At present,the Alzheimer’s disease main risk remains genetic ris ks,but major environmental fa ctors are increasingly shown to impact Alzheimer’s disease development and progression.Microglia,the most important brain immune cells,play a central role in Alzheimer’s disease pathogenesis and are considered environmental and lifestyle"sensors."Factors like environmental pollution and modern lifestyles(e.g.,chronic stress,poor dietary habits,sleep,and circadian rhythm disorde rs)can cause neuroinflammato ry responses that lead to cognitive impairment via microglial functioning and phenotypic regulation.However,the specific mechanisms underlying interactions among these facto rs and microglia in Alzheimer’s disease are unclear.Herein,we:discuss the biological effects of air pollution,chronic stress,gut micro biota,sleep patterns,physical exercise,cigarette smoking,and caffeine consumption on microglia;consider how unhealthy lifestyle factors influence individual susceptibility to Alzheimer’s disease;and present the neuroprotective effects of a healthy lifestyle.Toward intervening and controlling these environmental risk fa ctors at an early Alzheimer’s disease stage,understanding the role of microglia in Alzheimer’s disease development,and to rgeting strategies to to rget microglia,co uld be essential to future Alzheimer’s disease treatments.
文摘Abiotic stresses including drought,salinity,heat,cold,flooding,and ultraviolet radiation causes crop losses worldwide.In recent times,preventing these crop losses and producing more food and feed to meet the demands of ever-increasing human populations have gained unprecedented importance.However,the proportion of agricultural lands facing multiple abiotic stresses is expected only to rise under a changing global climate fueled by anthropogenic activities.Identifying the mechanisms developed and deployed by plants to counteract abiotic stresses and maintain their growth and survival under harsh conditions thus holds great significance.Recent investigations have shown that phytohormones,including the classical auxins,cytokinins,ethylene,and gibberellins,and newer members including brassinosteroids,jasmonates,and strigolactones may prove to be important metabolic engineering targets for producing abiotic stress-tolerant crop plants.In this review,we summarize and critically assess the roles that phytohormones play in plant growth and development and abiotic stress tolerance,besides their engineering for conferring abiotic stress tolerance in transgenic crops.We also describe recent successes in identifying the roles of phytohormones under stressful conditions.We conclude by describing the recent progress and future prospects including limitations and challenges of phytohormone engineering for inducing abiotic stress tolerance in crop plants.
基金We would like to thank Dr Nam-Hai Chua (Rockefeller Univer- sity) for kindly providing the pBA002Myc vector and the Arabi- dopsis Biological Resource Center (ABRC), Ohio State University for providing ToDNA insertion lines. This work was supported by grants from National Natural Science Foundation of China (No. 30530400/90717006/30670195) to Q Xie and Y Wu, the Chinese Academy of Science (KSCX2-YW-N-010 and CXTD-S2005-2), and the (iuangdong Natural Science Foundation, China (No. 5300648) to Z Deng.
文摘NAC family genes encode plant-specific transcription factors involved in diverse biological processes. In this study, the Arabidopsis NAC gene ATAF1 was found to be induced by drought, high-salinity, abscisic acid (ABA), methyl jasmonate, mechanical wounding, and Botrytis cinerea infection. Significant induction of ATAF1 was found in an ABA-deficient mutant aba2 subjected to drought or high salinity, revealing an ABA-independent mechanism of expression. Arabidopsis ATAFl-overexpression lines displayed many altered phenotypes, including dwarfism and short primary roots. Furthermore, in vivo experiments indicate that ATAF1 is a bonafide regulator modulating plant responses to many abiotic stresses and necrotrophic-pathogen infection. Overexpression of ATAF1 in Arabidopsis increased plant sensitivity to ABA, salt, and oxidative stresses. Especially, ATAF1 overexpression plants, but not mutant lines, showed remarkably enhanced plant tolerance to drought. Additionally, ATAF1 overexpression enhanced plant susceptibility to the necrotrophic pathogen B. cinerea, but did not alter disease symptoms caused by avirulent or virulent strains of P. syringae pv tomato DC3000. Transgenic plants overexpressing ATAF1 were hypersensitive to oxidative stress, suggesting that reactive oxygen intermediates may be related to ATAFl-mediated signaling in response to both pathogen and abiotic stresses.
基金funded by the National Natural Science Foundation of China(31372019)Key Laboratory of Urban Agriculture(North China)Ministry of Agriculture,P.R.China(kf2017015)the Beijing Municipal Education Commission(CEFF-PXM2017_014207_000043)
文摘CBF/DREB proteins play a critical role in abiotic stress-mediated gene expression and represent attractive regulons for plant breeding programs.However,no study has been conducted for CBF/DREB protein-related genes in jujube(Ziziphus jujuba Mill.).In this study,twenty-five ZjDREB genes were identified and annotated from the jujube(Z.jujuba‘Dongzao’)genome.Detailed analysis,including gene classification,annotation,phylogenetic evaluation,conserved motif determination and expression profiling were performed on all genes.Phylogenetic analysis showed that ZjDREB proteins were divided into five subgroups(A1–A5),but lacking a subgroup A6 corresponding to AtDREBs.The ZjDREB genes were distributed in nine of twelve chromosomes in the genome.Additionally,the expression patterns of the DREB genes under different abiotic stresses were investigated using q RT-PCR.Nineteen ZjDREB genes were down-regulated under low temperature,in contrast six ZjDREB genes(01,03,05,11,23 and 24)were up-regulated.Under drought,salinity and high temperature conditions,expression of ZjDREB03,09,10,14,15,17 and 20 genes were induced and showed similar expression patterns,suggesting that various stress conditions share common elements in the signaling pathway.The results suggest that the family of DREB genes play an important role in abiotic stresses in jujube,and provide a foundation for further functional studies of this important class of transcriptional regulators.