期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Photographing of a Multi-Pellet Ablation Process in HL-1M Tokamak with CCD Camera
1
作者 郑银甲 冯震 +7 位作者 李承跃 肖正贵 郭干成 李波 宋显明 付炳忠 李立 刘永 《Plasma Science and Technology》 SCIE EI CAS CSCD 2000年第1期95-103,共9页
The 2D CCD camera has been used to take photos during hydrogen multi-pellet injection in HL-1M tokamak. The hydrogen multi-pellet (2 × 1.0 mm, 3× 1.2 mm, 3×1.2 ~ 1.3 mm) is horizontally injected into ... The 2D CCD camera has been used to take photos during hydrogen multi-pellet injection in HL-1M tokamak. The hydrogen multi-pellet (2 × 1.0 mm, 3× 1.2 mm, 3×1.2 ~ 1.3 mm) is horizontally injected into plasma. The observation is performed above the injection path at a sight angle 13.4°,As the shape of cloud ablation varies so quickly, the key points of the experiment have to be the high temporal resolution of CCD and the determination of pellet radial location in plasma. A series of improvements have been made with the experiment setup, including camera parameter, control (NA, ROI) and trigger mode, so as to satisfy the experiment requirements. Thus very nice photos along with the satisfying experimental results are obtained such as: (1) single exposure time reduced to 100 us (2) multi-frame in one discharge (FPS≥ 40) (3)multi-exposure for one pellet so that further observation of the temporal process of pellet ablation may be possible. Through the data analysis on the spatial distibution of pellet ablation clouds in photos taken, the pellet dimensions, trajectory of the cloud and pellet velocity are obtained, and the physical mechanism of pellet-plasma interactions also analyzed. In particular, it is possible to provide an effective means for measuring q-profile of HL-1M plasma. 展开更多
关键词 Photographing of a Multi-Pellet ablation process in HL-1M Tokamak with CCD Camera CCD HL
下载PDF
Numerical simulation of laser ablation of molybdenum target for laser-induced breakdown spectroscopic application
2
作者 付彩龙 王奇 丁洪斌 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第8期58-64,共7页
Laser-induced breakdown spectroscopy has been recognized as a significant tool for element diagnostics in plasma–wall interaction. In this work, a one-dimensional numerical model is developed to simulate the laser ab... Laser-induced breakdown spectroscopy has been recognized as a significant tool for element diagnostics in plasma–wall interaction. In this work, a one-dimensional numerical model is developed to simulate the laser ablation processes of a molybdenum(Mo) target in vacuum conditions. The thermal process of the interaction between the ns-pulse laser with wavelength of 1064 nm and the Mo target is described by the heat conduction equation. The plasma plume generation and expansion are described by Euler equations, in which the conservation of mass density, momentum and energy are included. Saha equations are used to describe the local thermal equilibrium of electrons, Mo atoms,Mo~+ and Mo^(2+) Plasma shielding and emission are all considered in this model. The mainly numerical results are divided into three parts, as listed below.Firstly, the rule of the plasma shielding effect varying with laser intensity is demonstrated quantitatively and fitted with the Nelder function. Secondly, the key parameters of plasma plume,such as the number density of species, the propagation velocity and the temperature, are all calculated in this model. The results indicate that the propagation velocity of the plume center increased with time in a general trend, however, one valley value appeared at about 20 ns due to the pressure gradient near the target surface leading to negative plasma velocity. Thirdly, the persistent lines of a Mo atom in the wavelength range from 300 nm to 600 nm are selected and the spectrum is calculated. Moreover, the temporal evolutions of Mo's spectral lines at wavelength of 550.6494 nm,553.3031 nm and 557.0444 nm are given and the results are compared with experimental data in this work. 展开更多
关键词 LIBS ablation process molybdenum target numerical simulation
下载PDF
Two-dimensional numerical research on effects of titanium target bombarded by TEMPⅡ accelerator 被引量:1
3
作者 吴迪 宫野 +3 位作者 刘金远 王晓钢 刘悦 马腾才 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第11期2682-2687,共6页
Two-dimensional numerical research has been carried out on the ablation effects of titanium target irradiated by intense pulsed ion beam (IPIB) generated by TEMP Ⅱ accelerator. Temporal and spatial evolution of the... Two-dimensional numerical research has been carried out on the ablation effects of titanium target irradiated by intense pulsed ion beam (IPIB) generated by TEMP Ⅱ accelerator. Temporal and spatial evolution of the ablation process of the target during a pulse time has been simulated. We have come to the conclusion that the melting and evaporating process begin from the surface and the target is ablated layer by layer when the target is irradiated by the IPIB. Meanwhile, we also obtained the result that the average ablation velocity in target central region is about 10 m/s, which is far less than the ejection velocity of the plume plasma formed by irradiation. Different effects have been compared to the different ratio of the ions and different energy density of IPIB while the target is irradiated by pulsed beams. 展开更多
关键词 intense pulsed ion beam two-dimensional numerical model ablation process TITANIUM
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部