Objective Cognitive impairment(CI)in older individuals has a high morbidity rate worldwide,with poor diagnostic methods and susceptible population identification.This study aimed to investigate the relationship betwee...Objective Cognitive impairment(CI)in older individuals has a high morbidity rate worldwide,with poor diagnostic methods and susceptible population identification.This study aimed to investigate the relationship between different retinal metrics and CI in a particular population,emphasizing polyvascular status.Methods We collected information from the Asymptomatic Polyvascular Abnormalities Community Study on retinal vessel calibers,retinal nerve fiber layer(RNFL)thickness,and cognitive function of 3,785participants,aged 40 years or older.Logistic regression was used to analyze the relationship between retinal metrics and cognitive function.Subgroups stratified by different vascular statuses were also analyzed.Results RNFL thickness was significantly thinner in the CI group(odds ratio:0.973,95%confidence interval:0.953–0.994).In the subgroup analysis,the difference still existed in the non-intracranial arterial stenosis,non-extracranial carotid arterial stenosis,and peripheral arterial disease subgroups(P<0.05).Conclusion A thin RNFL is associated with CI,especially in people with non-large vessel stenosis.The underlying small vessel change in RNFL and CI should be investigated in the future.展开更多
Visceral myopathy is one of the causes of chronic intestinal pseudo-obstruction. Most cases pathologically reveal degenerative changes of myocytes or muscularis propia atrophy and fibrosis. Abnormal layering of muscul...Visceral myopathy is one of the causes of chronic intestinal pseudo-obstruction. Most cases pathologically reveal degenerative changes of myocytes or muscularis propia atrophy and fibrosis. Abnormal layering of muscularis propria is extremely rare. We report a case of a 9-mo-old Thai male baby who presented with chronic intestinal pseudo-obstruction. Histologic findings showed abnormal layering of small intestinal muscularis propria with an additional oblique layer and aberrant muscularization in serosa. The patient also had a short small bowel without malrotation, brachydactyly,and absence of the 2nd to 4th middle phalanges of both hands. The patient was treated with cisapride and combined parenteral and enteral nutritional support.He had gradual clinical improvement and gained body weight. Subsequently, the parenteral nutrition was discontinued. The previously reported cases are reviewed and discussed.展开更多
The influence of local cooling/heating on two types of nonlinear instabilities of the high-speed boundary layer,namely,the First and Second Mode Oblique Breakdown(FMOB and SMOB),is studied using direct numerical simul...The influence of local cooling/heating on two types of nonlinear instabilities of the high-speed boundary layer,namely,the First and Second Mode Oblique Breakdown(FMOB and SMOB),is studied using direct numerical simulations.Local cooling and heating are performed at the weak and strong nonlinear stages of the two types of nonlinear instabilities.It is found that for the FMOB,local cooling at the weak nonlinear region will suppress the increase of the fundamental mode,leading to transition delay.Opposite to local cooling,local heating at the weak nonlinear region of the FMOB will promote the growth of the fundamental mode,resulting in the occurrence of more upstream transition onset.However,if local cooling and heating are performed at the strong nonlinear region,the influence of both local cooling and heating on the FMOB can be neglected.Remarkably,both local heating and cooling can delay the SMOB for different mechanisms.Performing local cooling at the weak nonlinear region of the SMOB,the low amplitude of higher spanwise wavenumber steady mode caused by local cooling lies behind transition delay.When local cooling is set at the strong nonlinear region,the low amplitude of harmonic modes around the cooling area can cause transition delay.Additionally,local heating will suppress the SMOB for the slowing amplification rate of various modes caused by the local heating at both the weak and strong nonlinear stages of the SMOB.展开更多
The paper proposes a novel transceiver in physical layer for high-speed serial data link based upon Universal Serial Bus (USB) 2.0, comprising transmitter and receiver. In the design, transmitter contains pre-and-main...The paper proposes a novel transceiver in physical layer for high-speed serial data link based upon Universal Serial Bus (USB) 2.0, comprising transmitter and receiver. In the design, transmitter contains pre-and-main driver to satisfy slew rate of output data, receiver includes optimized topology to improve preci- sion of received data. The circuit simulation is based on Cadence’s spectre software and Taiwan Semiconduc- tor Manufacture Corporation’s library of 0.25μm mixed-signal Complementary Metal-Oxide Semiconductor (CMOS) model. The front and post-simulation results reveal that the transceiver designed can transmit and re- ceive high-speed data in 480Mbps, which is in agreement with USB2.0 specification. The chip of physi- cal-layer transceiver has been designed and implemented with 0.25μm standard CMOS technology.展开更多
To enhance the high-temperature adaptability of copper-based composite materials and C–C/SiC discs,this article innovatively introduces a method of replacing graphite with sepiolite,resulting in the successful fabric...To enhance the high-temperature adaptability of copper-based composite materials and C–C/SiC discs,this article innovatively introduces a method of replacing graphite with sepiolite,resulting in the successful fabrication of samples with exceptional mechanical and friction properties.The results reveal that moderate incorporation(less 6%)of sepiolite provides a particle reinforcement effect,resulting in an improvement of mechanical properties.Interestingly,the addition of sepiolite causes a change in the traditional saddle-shaped friction curve due to high temperature lubrication.Meanwhile,the primary advantage of sepiolite lies in its superior abrasion resistance,evident in the increased friction coefficient and altered wear mechanisms with higher sepiolite content.The wear resistance is optimal at 200 Km/h(400℃).Particularly,the unique composition of the friction layer(outermost layer:a composite film consisting of B2O3,sepiolite,graphite,and metal oxide films;intermediate layer:metal oxide films)plays a pivotal role in improving friction stability.Finally,there are significant optimizations in the GA algorithm,especially GA-GB model has the best prediction effect on the maximum friction temperature.展开更多
Aero-optical effects for starlight transmission in the high-speed flow field will reduce the accuracy of the star sensor on an aircraft.Numerical simulations for aero-optical effects usually require plenty of calculat...Aero-optical effects for starlight transmission in the high-speed flow field will reduce the accuracy of the star sensor on an aircraft.Numerical simulations for aero-optical effects usually require plenty of calculations,which cause difficulties when designing a celestial navigation system for a high-speed aircraft.In this study,an Aero-Optical Simulator For Starlight Transmission(AOSST)in the boundary layer is developed.It effectively reduces the computational burden compared to that of the widely used CFD simulation,and it achieves satisfactory accuracy.In this simulator,gas ellipsoids satisfying certain design rules are used to simulate coherent density structures in boundary layers.Design rules for the gas ellipsoids are found from published experimental and high-fidelity CFD simulation results.The generated wavefront distortion by AOSST is anchored with the scale law for aero-optical distortion in the boundary layer by determining some control parameters,which enables the simulator to output reliable results over a wide range of flight states.Four numerical examples are provided to verify the performance of AOSST.The results demonstrate that AOSST is able to simulate the directional dependence of aero-optical distortions in boundary layers,the variation trend of distorted wavefront shapes with Reynolds number,and the grayscale distribution on the disturbed star map.展开更多
基金supported by National Natural Science Foundation of China(No.82001239)Beijing Hospitals Authority Innovation Studio of Young Staff Funding Support,code(NO.202112)。
文摘Objective Cognitive impairment(CI)in older individuals has a high morbidity rate worldwide,with poor diagnostic methods and susceptible population identification.This study aimed to investigate the relationship between different retinal metrics and CI in a particular population,emphasizing polyvascular status.Methods We collected information from the Asymptomatic Polyvascular Abnormalities Community Study on retinal vessel calibers,retinal nerve fiber layer(RNFL)thickness,and cognitive function of 3,785participants,aged 40 years or older.Logistic regression was used to analyze the relationship between retinal metrics and cognitive function.Subgroups stratified by different vascular statuses were also analyzed.Results RNFL thickness was significantly thinner in the CI group(odds ratio:0.973,95%confidence interval:0.953–0.994).In the subgroup analysis,the difference still existed in the non-intracranial arterial stenosis,non-extracranial carotid arterial stenosis,and peripheral arterial disease subgroups(P<0.05).Conclusion A thin RNFL is associated with CI,especially in people with non-large vessel stenosis.The underlying small vessel change in RNFL and CI should be investigated in the future.
基金Supported by Faculty of Medicine,Ramathibodi Hospital,Mahidol University,Thailand
文摘Visceral myopathy is one of the causes of chronic intestinal pseudo-obstruction. Most cases pathologically reveal degenerative changes of myocytes or muscularis propia atrophy and fibrosis. Abnormal layering of muscularis propria is extremely rare. We report a case of a 9-mo-old Thai male baby who presented with chronic intestinal pseudo-obstruction. Histologic findings showed abnormal layering of small intestinal muscularis propria with an additional oblique layer and aberrant muscularization in serosa. The patient also had a short small bowel without malrotation, brachydactyly,and absence of the 2nd to 4th middle phalanges of both hands. The patient was treated with cisapride and combined parenteral and enteral nutritional support.He had gradual clinical improvement and gained body weight. Subsequently, the parenteral nutrition was discontinued. The previously reported cases are reviewed and discussed.
基金supported by the National Natural Science Foundation of China(No.11721202)。
文摘The influence of local cooling/heating on two types of nonlinear instabilities of the high-speed boundary layer,namely,the First and Second Mode Oblique Breakdown(FMOB and SMOB),is studied using direct numerical simulations.Local cooling and heating are performed at the weak and strong nonlinear stages of the two types of nonlinear instabilities.It is found that for the FMOB,local cooling at the weak nonlinear region will suppress the increase of the fundamental mode,leading to transition delay.Opposite to local cooling,local heating at the weak nonlinear region of the FMOB will promote the growth of the fundamental mode,resulting in the occurrence of more upstream transition onset.However,if local cooling and heating are performed at the strong nonlinear region,the influence of both local cooling and heating on the FMOB can be neglected.Remarkably,both local heating and cooling can delay the SMOB for different mechanisms.Performing local cooling at the weak nonlinear region of the SMOB,the low amplitude of higher spanwise wavenumber steady mode caused by local cooling lies behind transition delay.When local cooling is set at the strong nonlinear region,the low amplitude of harmonic modes around the cooling area can cause transition delay.Additionally,local heating will suppress the SMOB for the slowing amplification rate of various modes caused by the local heating at both the weak and strong nonlinear stages of the SMOB.
文摘The paper proposes a novel transceiver in physical layer for high-speed serial data link based upon Universal Serial Bus (USB) 2.0, comprising transmitter and receiver. In the design, transmitter contains pre-and-main driver to satisfy slew rate of output data, receiver includes optimized topology to improve preci- sion of received data. The circuit simulation is based on Cadence’s spectre software and Taiwan Semiconduc- tor Manufacture Corporation’s library of 0.25μm mixed-signal Complementary Metal-Oxide Semiconductor (CMOS) model. The front and post-simulation results reveal that the transceiver designed can transmit and re- ceive high-speed data in 480Mbps, which is in agreement with USB2.0 specification. The chip of physi- cal-layer transceiver has been designed and implemented with 0.25μm standard CMOS technology.
基金the National Key Research and Development Program of China(Grant No.2021YFB3703803)National Natural Science Foundation of China(Grant No.52075555)for their financial support.
文摘To enhance the high-temperature adaptability of copper-based composite materials and C–C/SiC discs,this article innovatively introduces a method of replacing graphite with sepiolite,resulting in the successful fabrication of samples with exceptional mechanical and friction properties.The results reveal that moderate incorporation(less 6%)of sepiolite provides a particle reinforcement effect,resulting in an improvement of mechanical properties.Interestingly,the addition of sepiolite causes a change in the traditional saddle-shaped friction curve due to high temperature lubrication.Meanwhile,the primary advantage of sepiolite lies in its superior abrasion resistance,evident in the increased friction coefficient and altered wear mechanisms with higher sepiolite content.The wear resistance is optimal at 200 Km/h(400℃).Particularly,the unique composition of the friction layer(outermost layer:a composite film consisting of B2O3,sepiolite,graphite,and metal oxide films;intermediate layer:metal oxide films)plays a pivotal role in improving friction stability.Finally,there are significant optimizations in the GA algorithm,especially GA-GB model has the best prediction effect on the maximum friction temperature.
基金supported by the National Defense PreResearch Foundation of China(No.JCKY2016601C005)the Science and Technology on Space Intelligent Control Laboratory of China(No.ZDSYS-2018-03)。
文摘Aero-optical effects for starlight transmission in the high-speed flow field will reduce the accuracy of the star sensor on an aircraft.Numerical simulations for aero-optical effects usually require plenty of calculations,which cause difficulties when designing a celestial navigation system for a high-speed aircraft.In this study,an Aero-Optical Simulator For Starlight Transmission(AOSST)in the boundary layer is developed.It effectively reduces the computational burden compared to that of the widely used CFD simulation,and it achieves satisfactory accuracy.In this simulator,gas ellipsoids satisfying certain design rules are used to simulate coherent density structures in boundary layers.Design rules for the gas ellipsoids are found from published experimental and high-fidelity CFD simulation results.The generated wavefront distortion by AOSST is anchored with the scale law for aero-optical distortion in the boundary layer by determining some control parameters,which enables the simulator to output reliable results over a wide range of flight states.Four numerical examples are provided to verify the performance of AOSST.The results demonstrate that AOSST is able to simulate the directional dependence of aero-optical distortions in boundary layers,the variation trend of distorted wavefront shapes with Reynolds number,and the grayscale distribution on the disturbed star map.