Objective The Tarim Basin is China's largest ore-bearing interior basin, and contains mainly marine oils. The Kuqa depression, a secondary structural unit within the northem Tarim Basin, is composed of Mesozoic and ...Objective The Tarim Basin is China's largest ore-bearing interior basin, and contains mainly marine oils. The Kuqa depression, a secondary structural unit within the northem Tarim Basin, is composed of Mesozoic and Cenozoic clastic sedimentary rocks dominated by continental oil. Previous research suggests that the crude oils especially condensates in the Kuqa depression are rich in abnormally high abundant rearranged hopanes. On the basis of 41 condensate samples and five oil samples from the Kuqa depression, this work systematically discussed the relationship between biomarker parameters and rearranged hopanes and deeply investigated the influence of depositional environment, original source,展开更多
There are three abnormally high porosity zones developed in buried Paleogene nearshore subaqueous fan and sublacustrine fan clastic'reservoirs at 2,800-3,200 m, 3,250-3,700 m and 3,900- 4,400 m, respectively, within ...There are three abnormally high porosity zones developed in buried Paleogene nearshore subaqueous fan and sublacustrine fan clastic'reservoirs at 2,800-3,200 m, 3,250-3,700 m and 3,900- 4,400 m, respectively, within the Shengtuo area of the Dongying Sag. Here the porosity of reservoirs buried deeper than 4,000 m can still be greater than 20%. Investigation of these three abnormally high porosity (AHP) zones in the 3rd to 4th member of the Paleogene Shahejie Formation in the Shengtuo area was carried out with utilization of core observation, thin section identification, SEM observation, image analysis, core physical property testing and other technical methods. The results show that, the AHP zones in 2,800-3,200 m and 3,250-3,700 m are visible pores primary AHP zones dominated by significant primary intergranular pores (more than 50% of the total porosity), while secondary pores and micropores in authigenic clays may develop in some reservoirs. AHP reservoirs in the AHP zone of 3,900-4,400 m are dominated by micropores in matrix, visible pores are mainly grain dissolution pores but with low absolute content (〈 1%), so this zone belongs to the micropores primary AHP zone. The genesis of the three AHP zones was studied to distinguish between porosity enhancement and porosity preservation. Our research shows that, in deeply buried clastic reservoirs in the Shengtuo area, mineral dissolution occurred in a relatively closed diagenetic system with high temperature and high salinity. Reservoir rocks underwent extensive feldspar dissolution, while detrital carbonate grains and carbonate cements show no evidence of extensive dissolution. Although significant feldspar dissolution pores developed, feldspar dissolution enhanced porosity only a little due to the precipitation of almost isovolumetric dissolution products in the nearby primary intergranular pores in forms of authigenic clays and quartz cements. Net enhanced porosity originating from feldspar dissolution is generally less than 0.25%. Thus, the subsurface dissolution has little impact on the mid-deep buried high porosity reservoirs. Reservoirs in braided channels of middle fans in sublacustrine fans and reservoirs in the middle-front of fan bodies of nearshore subaqueous fans provide the basis for the development of AHP zones. The shallow development of fluid overpressure and early hydrocarbon emplacement have effectively retarded compaction and carbonate cementation, so that the high porosity in the superficial layers is preserved in the mid-deep layers. These are the main controlling factors in the development of AHP zones.展开更多
Based on the comprehensive study of core samples, well testing data, and reservoir fluid properties, the construction and the distribution of the abnormal pressure systems of the Huatugou oil field in Qaidam Basin are...Based on the comprehensive study of core samples, well testing data, and reservoir fluid properties, the construction and the distribution of the abnormal pressure systems of the Huatugou oil field in Qaidam Basin are discussed. The correlation between the pressure systems and hydrocarbon accumulation is addressed by analyzing the corresponding fluid characteristics. The results show that the Huatugou oil field as a whole has low formation pressure and low fluid energy; therefore, the hydrocarbons are hard to migrate, which facilitates the forming of primary reservoirs. The study reservoirs, located at the Xiayoushashan Formation (N1/2) and the Shangganchaigou Formation (N1) are relatively shallow and have medium porosity and low permeability. They are abnormal low-pressure reservoirs with an average formation pressure coefficient of 0.61 and 0.72 respectively. According to the pressure coefficient and geothermal anomaly, the N1 and N1/2 Formations belong to two independent temperature-pressure systems, and the former has slightly higher energy. The low-pressure compartments consist of a distal bar as the main body, prodelta mud as the top boundary, and shore and shallow lake mud or algal mound as the bottom boundary. They are vertically overlapped and horizontally paralleled. The formation water is abundant in the Cl^- ion and can be categorized as CaCl2 type with high safinity, which indicates that the abnormal low-pressure compartments are in good sealing condition and beneficial for oil and gas accumulation and preservation.展开更多
Based on new data from cores,drilling and logging,combined with extensive rock and mineral testing analysis,a systematic analysis is conducted on the characteristics,diagenesis types,genesis and controlling factors of...Based on new data from cores,drilling and logging,combined with extensive rock and mineral testing analysis,a systematic analysis is conducted on the characteristics,diagenesis types,genesis and controlling factors of deep to ultra-deep abnormally high porosity clastic rock reservoirs in the Oligocene Linhe Formation in the Hetao Basin.The reservoir space of the deep to ultra-deep clastic rock reservoirs in the Linhe Formation is mainly primary pores,and the coupling of three favorable diagenetic elements,namely the rock fabric with strong compaction resistance,weak thermal compaction diagenetic dynamic field,and diagenetic environment with weak fluid compaction-weak cementation,is conducive to the preservation of primary pores.The Linhe Formation clastic rocks have a superior preexisting material composition,with an average total content of 90%for quartz,feldspar,and rigid rock fragments,and strong resistance to compaction.The geothermal gradient in Linhe Depression in the range of(2.0–2.6)°C/100 m is low,and together with the burial history of long-term shallow burial and late rapid deep burial,it forms a weak thermal compaction diagenetic dynamic field environment.The diagenetic environment of the saline lake basin is characterized by weak fluid compaction.At the same time,the paleosalinity has zoning characteristics,and weak cementation in low salinity areas is conducive to the preservation of primary pores.The hydrodynamic conditions of sedimentation,salinity differentiation of ancient water in saline lake basins,and sand body thickness jointly control the distribution of high-quality reservoirs in the Linhe Formation.展开更多
基金financed by the National Science Foundation of China(grant No.41272170)
文摘Objective The Tarim Basin is China's largest ore-bearing interior basin, and contains mainly marine oils. The Kuqa depression, a secondary structural unit within the northem Tarim Basin, is composed of Mesozoic and Cenozoic clastic sedimentary rocks dominated by continental oil. Previous research suggests that the crude oils especially condensates in the Kuqa depression are rich in abnormally high abundant rearranged hopanes. On the basis of 41 condensate samples and five oil samples from the Kuqa depression, this work systematically discussed the relationship between biomarker parameters and rearranged hopanes and deeply investigated the influence of depositional environment, original source,
基金financially supported by the National Natural Science Foundation of China (No. U1262203, No. 41102058)a National Science and Technology Special Grant (No. 2011ZX05006-003)Foundation for the Author of National Excellent Doctoral Dissertation of China
文摘There are three abnormally high porosity zones developed in buried Paleogene nearshore subaqueous fan and sublacustrine fan clastic'reservoirs at 2,800-3,200 m, 3,250-3,700 m and 3,900- 4,400 m, respectively, within the Shengtuo area of the Dongying Sag. Here the porosity of reservoirs buried deeper than 4,000 m can still be greater than 20%. Investigation of these three abnormally high porosity (AHP) zones in the 3rd to 4th member of the Paleogene Shahejie Formation in the Shengtuo area was carried out with utilization of core observation, thin section identification, SEM observation, image analysis, core physical property testing and other technical methods. The results show that, the AHP zones in 2,800-3,200 m and 3,250-3,700 m are visible pores primary AHP zones dominated by significant primary intergranular pores (more than 50% of the total porosity), while secondary pores and micropores in authigenic clays may develop in some reservoirs. AHP reservoirs in the AHP zone of 3,900-4,400 m are dominated by micropores in matrix, visible pores are mainly grain dissolution pores but with low absolute content (〈 1%), so this zone belongs to the micropores primary AHP zone. The genesis of the three AHP zones was studied to distinguish between porosity enhancement and porosity preservation. Our research shows that, in deeply buried clastic reservoirs in the Shengtuo area, mineral dissolution occurred in a relatively closed diagenetic system with high temperature and high salinity. Reservoir rocks underwent extensive feldspar dissolution, while detrital carbonate grains and carbonate cements show no evidence of extensive dissolution. Although significant feldspar dissolution pores developed, feldspar dissolution enhanced porosity only a little due to the precipitation of almost isovolumetric dissolution products in the nearby primary intergranular pores in forms of authigenic clays and quartz cements. Net enhanced porosity originating from feldspar dissolution is generally less than 0.25%. Thus, the subsurface dissolution has little impact on the mid-deep buried high porosity reservoirs. Reservoirs in braided channels of middle fans in sublacustrine fans and reservoirs in the middle-front of fan bodies of nearshore subaqueous fans provide the basis for the development of AHP zones. The shallow development of fluid overpressure and early hydrocarbon emplacement have effectively retarded compaction and carbonate cementation, so that the high porosity in the superficial layers is preserved in the mid-deep layers. These are the main controlling factors in the development of AHP zones.
基金fmancially supported by the National Natural Science Foundation of China(No.40802027)the PetroChina Innovation Fund(No.0706d01040102)
文摘Based on the comprehensive study of core samples, well testing data, and reservoir fluid properties, the construction and the distribution of the abnormal pressure systems of the Huatugou oil field in Qaidam Basin are discussed. The correlation between the pressure systems and hydrocarbon accumulation is addressed by analyzing the corresponding fluid characteristics. The results show that the Huatugou oil field as a whole has low formation pressure and low fluid energy; therefore, the hydrocarbons are hard to migrate, which facilitates the forming of primary reservoirs. The study reservoirs, located at the Xiayoushashan Formation (N1/2) and the Shangganchaigou Formation (N1) are relatively shallow and have medium porosity and low permeability. They are abnormal low-pressure reservoirs with an average formation pressure coefficient of 0.61 and 0.72 respectively. According to the pressure coefficient and geothermal anomaly, the N1 and N1/2 Formations belong to two independent temperature-pressure systems, and the former has slightly higher energy. The low-pressure compartments consist of a distal bar as the main body, prodelta mud as the top boundary, and shore and shallow lake mud or algal mound as the bottom boundary. They are vertically overlapped and horizontally paralleled. The formation water is abundant in the Cl^- ion and can be categorized as CaCl2 type with high safinity, which indicates that the abnormal low-pressure compartments are in good sealing condition and beneficial for oil and gas accumulation and preservation.
基金Supported by the CNPC Science and Technology Project(2023ZZ022023ZZ14-01).
文摘Based on new data from cores,drilling and logging,combined with extensive rock and mineral testing analysis,a systematic analysis is conducted on the characteristics,diagenesis types,genesis and controlling factors of deep to ultra-deep abnormally high porosity clastic rock reservoirs in the Oligocene Linhe Formation in the Hetao Basin.The reservoir space of the deep to ultra-deep clastic rock reservoirs in the Linhe Formation is mainly primary pores,and the coupling of three favorable diagenetic elements,namely the rock fabric with strong compaction resistance,weak thermal compaction diagenetic dynamic field,and diagenetic environment with weak fluid compaction-weak cementation,is conducive to the preservation of primary pores.The Linhe Formation clastic rocks have a superior preexisting material composition,with an average total content of 90%for quartz,feldspar,and rigid rock fragments,and strong resistance to compaction.The geothermal gradient in Linhe Depression in the range of(2.0–2.6)°C/100 m is low,and together with the burial history of long-term shallow burial and late rapid deep burial,it forms a weak thermal compaction diagenetic dynamic field environment.The diagenetic environment of the saline lake basin is characterized by weak fluid compaction.At the same time,the paleosalinity has zoning characteristics,and weak cementation in low salinity areas is conducive to the preservation of primary pores.The hydrodynamic conditions of sedimentation,salinity differentiation of ancient water in saline lake basins,and sand body thickness jointly control the distribution of high-quality reservoirs in the Linhe Formation.