Light plays an important role in the photosynthesis and metabolic process of microalgae.However,how different light conditions regulate the biomass production and protein accumulation of microalgae is mostly unknown.I...Light plays an important role in the photosynthesis and metabolic process of microalgae.However,how different light conditions regulate the biomass production and protein accumulation of microalgae is mostly unknown.In this study,the influence of different light conditions,including light colors,densities,and light:dark cycles on the cell growth and biochemical composition of Spirulina platensis was symmetrically characterized.Under different colored lights,S.platensis all shows an increase trend within the increased light intensity ranges;however,each showing different optimal light intensities.At the same light intensity,different colored lights show different growth rate of S.platensis following the sequence of red>white>green>yellow>blue.The maximum growth rate and protein accumulation were determined as 21.88 and 5.10 mg/(L·d)when illuminated under red LED.The energy efficiency of different light sources was calculated and ranked as red>white>blue≈green>yellow.Transcriptomic analysis suggests that red light can promote cell growth and protein accumulation by upregulating genes related to photosynthesis,carbon fixation,and C-N metabolism pathways.This study provides a conducive and efficient way to promote biomass production and protein accumulation of S.platensis by regulating light conditions.展开更多
The temporal dynamics of the biomass, as well as the carbon (C), nitrogen (N), phosphorus (P) concentrations and accumulation contents, in above- and below-ground vegetation components were determined in the alp...The temporal dynamics of the biomass, as well as the carbon (C), nitrogen (N), phosphorus (P) concentrations and accumulation contents, in above- and below-ground vegetation components were determined in the alpine steppe vegetation of Northern Tibet during the growing season of 2OLO. The highest levels of total biomass (311.68 g m-2), total C (115.95 g m-2), total N (2.60 g m-2), and total P (0.90 g m-2) accumulation contents were obtained in August in 2010. Further, biomass and nutrient stocks in the below-ground components were higher than those of the above-ground components. The dominant species viz., Stipa purpurea and Carex moorcrofli had lower biomass and C, N, P accumulations than the companion species which including Oxytropis. spp., Artemisia capillaris Thunb., Aster tataricus L., and SO on.展开更多
Accumulation of vegetation biomass is a crucial process for carbon fixation in the early stage of afforestation and a primary driving force for subsequent ecological functions.Accurately assessing the storage and allo...Accumulation of vegetation biomass is a crucial process for carbon fixation in the early stage of afforestation and a primary driving force for subsequent ecological functions.Accurately assessing the storage and allocation of elements in plantations is essential for their management and estimating carbon sink capacity.However,current knowledge of the storage and allocation patterns of elements within plant organs at the community level is limited.To clarify the distribution patterns of elements in plant organs at the community level,we measured the biomass within plant organs of five typical plantations in the early stage of afforestation in the loess hilly-gully region.We assessed the main drivers of element accumulation and distribution by employing redundancy analysis and random forest.Results revealed significant differences in biomass storages among plantations and a significant effect of plantation type on the storages of elements within plant organs.Furthermore,the dominant factors influencing C–N–P storage and allocation at the community level were found to be inconsistent.While the storage of elements was mainly influenced by stand openness,total soil nitrogen,and plant diversity,the allocation of elements in organs was mainly influenced by stand openness and soil water content.Overall,the spatial structure of the community had an important influence on both element storage and allocation,but soil conditions played a more important role in element allocation than in storage.Random forest results showed that at the community level,factors influencing element storage and allocation within plant organs often differed.The regulation of elemental storage could be regulated by the major growth demand resources,while the allocation was regulated by other limiting class factors,which often differed from those that had a significant effect on element storage.The differences in plant organ elemental storage and allocation drivers at the community level reflect community adaptation strategies and the regulation of resources by ecosystems in combination with plants.Our study provides valuable insights for enhancing plantation C sink estimates and serves as a reference for regulating element storage and allocation at the local scale.展开更多
In order to understand its response towards nickel stress, watercress (Nasturtium officinale R. Br.) was exposed to nickel (1-25 mg/L) for 1, 3, 5 and 7 days. The accumulation and translocation of nickel were dete...In order to understand its response towards nickel stress, watercress (Nasturtium officinale R. Br.) was exposed to nickel (1-25 mg/L) for 1, 3, 5 and 7 days. The accumulation and translocation of nickel were determined and the influence of nickel on biomass, protein content and enzymatic antioxidants was examined for both roots and leaves. It was determined that N. o fficinale could accumulate appreciable amounts of Ni in both roots and leaves. Nickel accumulated particularly in the roots of plants. Biomass increased at low nickel concentrations but certain measurable change was not found at high concentrations. Under stress conditions the antioxidant enzymes were up-regulated compared to control. An increase in protein content and enzyme activities was observed at moderate exposure conditions followed by a decline at both roots and leaves. The maximum enzyme activities were observed at different exposure conditions. Our results showed that N. officinale had the capacity to overcome nickel-induced stress especially at moderate nickel exposure. Therefore, N. officinale may be used as a phytoremediator in moderately polluted aquatic ecosystems.展开更多
Roadside trees are effective natural solutions for mitigating climate change. Despite the usefulness of trees to carbon sequestration, there is a dearth of information on the estimation of biomass and carbon stock for...Roadside trees are effective natural solutions for mitigating climate change. Despite the usefulness of trees to carbon sequestration, there is a dearth of information on the estimation of biomass and carbon stock for roadside trees in the study area. This study aimed to estimate the carbon stock and carbon dioxide equivalent of roadside trees. A complete enumeration of trees was carried out in Kétou, Pobè and Sakété within the communes of the Plateau Department, Bénin Republic. Total height and diameter at breast height were measured from trees along the roads while individual wood density value was obtained from wood density database. The allometric method of biomass estimation was adopted for the research. The results showed that the total estimations for above-ground biomass, carbon stock and carbon equivalent from all the enumerated roadside trees were 154.53 mt, 72.63 mt and 266.55 mt, respectively. The results imply that the roadside trees contain a substantial amount of carbon stock that can contribute to climate change mitigation through carbon sequestration.展开更多
The dynamics of biomass accumulation during the growing period, the yield of leafy stalks and tubers, and the nutrient concentration and nutrient uptake of the yield were investigated for two Jerusalem artichoke varie...The dynamics of biomass accumulation during the growing period, the yield of leafy stalks and tubers, and the nutrient concentration and nutrient uptake of the yield were investigated for two Jerusalem artichoke varieties (Tápiói Korai and Tápiói Sima) in a field experiment involving mineral fertilisation. Considerable differences were observed between the dynamics of leafy stalk and tuber development in Tápiói Korai which has a short vegetation period and Tápiói Sima where the vegetation period is long. The maximum dry matter ratio between the tuber yield and the leafy stalk yield was 1:1 for Tápiói Korai and 1:4.5 for Tápiói Sima. During the period when the maximum aboveground biomass developed in Tápiói Korai, 100 kg.ha-1 N and P fertiliser resulted in the highest leafy stalk yield (38.34 t.ha-1), while for Tápiói Sima, which developed a much greater leafy stalk mass, the highest aboveground biomass yield (78-80 t.ha-1) was given in response to 200 kg.ha-1 N supplemented by P and K fertiliser. Both artichoke varieties produced the great-est tuber yield at a N rate of 200 kg.ha-1, supplemented with P and K fertiliser. The nutrient concentration in the leafy stalks was highest on the 85th day of the vegetation period, prior to intensive dry matter accumulation in the leafy stalks and before tuber formation began. In both varieties the maximum nutrient uptake was recorded on the 155th day. Great differences were observed between the varieties in terms of specific nutrient uptake. For a tuber yield of 10 t, together with the corresponding leafy stalk yield, the specific nutrient uptake of the Tápiói Korai variety amounted to 48 kg N, 10 kg P, 83 kg K, 30 kg Ca and 10 kg Mg, while for Tápiói Sima these figures were 162 kg N, 30 kg P, 300 kg K, 84 kg Ca and 45 kg Mg.展开更多
Background: Forest productivity has a pivotal role in human well-being. Vegetation quantity, niche complementarity, mass-ratio, and soil resources are alternative/complementary ecological mechanisms driving productivi...Background: Forest productivity has a pivotal role in human well-being. Vegetation quantity, niche complementarity, mass-ratio, and soil resources are alternative/complementary ecological mechanisms driving productivity. One challenge in current forest management depends on identifying and manipulating these mechanisms to enhance productivity. This study assessed the extent to which these mechanisms control aboveground biomass productivity(AGBP) of a Chilean mediterranean-type matorral. AGBP measured as tree aboveground biomass changes over a 7-years period, was estimated for twelve 25 m × 25 m plots across a wide range of matorral compositions and structures. Variables related to canopy structure, species and functional diversity, species and functional dominance, soil texture, soil water and soil nitrogen content were measured as surrogates of the four mechanisms proposed. Linear regression models were used to test the hypotheses. A multimodel inference based on the Akaike’s information criterion was used to select the best models explaining AGBP and for identifying the relative importance of each mechanism.Results: Vegetation quantity(tree density) and mass-ratio(relative biomass of Cryptocarya alba, a conservative species) were the strongest drivers increasing AGBP, while niche complementarity(richness species) and soil resources(sand, %) had a smaller effect either decreasing or increasing AGBP, respectively. This study provides the first assessment of alternative mechanisms driving AGBP in mediterranean forests of Chile. There is strong evidence suggesting that the vegetation quantity and mass-ratio mechanisms are key drivers of AGBP, such as in other tropical and temperate forests. However, in contrast with other studies from mediterranean-type forests, our results show a negative effect of species diversity and a small effect of soil resources on AGBP.Conclusion: AGBP in the Chilean matorral depends mainly on the vegetation quantity and mass-ratio mechanisms.The findings of this study have implications for matorral restoration and management for the production of timber and non-timber products and carbon sequestration.展开更多
Boreal forests play an important role in global environment systems. Understanding boreal forest ecosystem structure and function requires accurate monitoring and estimating of forest canopy and biomass. We used parti...Boreal forests play an important role in global environment systems. Understanding boreal forest ecosystem structure and function requires accurate monitoring and estimating of forest canopy and biomass. We used partial least square regression (PLSR) models to relate forest parameters, i.e. canopy closure density and above ground tree biomass, to Landsat ETM+ data. The established models were optimized according to the variable importance for projection (VIP) criterion and the bootstrap method, and their performance was compared using several statistical indices. All variables selected by the VIP criterion passed the bootstrap test (p〈0.05). The simplified models without insignificant variables (VIP 〈1) performed as well as the full model but with less computation time. The relative root mean square error (RMSE%) was 29% for canopy closure density, and 58% for above ground tree biomass. We conclude that PLSR can be an effective method for estimating canopy closure density and above ground biomass.展开更多
The authors developed a model to estimate annual tree growth based on tree-ring data (Abbr. TGTRing model) derived from the trunk at 0.5,1.3 and 2.5 m height. This model was applied to estimate the annual biomass and ...The authors developed a model to estimate annual tree growth based on tree-ring data (Abbr. TGTRing model) derived from the trunk at 0.5,1.3 and 2.5 m height. This model was applied to estimate the annual biomass and carbon accumulation of a plantation in Qianyanzhou Red-Soil Hill Comprehensive Development Experimental Station of CAS in Taihe County,Jiangxi Province (Abbr. Qianyanzhou). The results showed that the inflexion points of the biomass and carbon accumulation curves occur at 17 and 18 years of age,respectively,in masson pine,whilst both inflexion points occurred at 15 years in slash pine and Chinese fir. The biomass and carbon accumulation in Chinese fir proved to be greater in the last 20 years than in the other species,with 171.697 t/hm2 and 92.29 tc/hm2,respectively. masson pine,with a biomass of 133.84 t/hm2 and a carbon accumulation of 73.92 tc/hm2 was the lowest whilst slash pine was intermediate with a biomass of 147.639 t/hm2 (unturpentined) and 135.743 t/hm2 (turpentined),and a carbon accumulation of 80.18 tc/hm2 (unturpentined) and 73.72 tc/hm2 (turpentined). In 2006,the total biomass and carbon storage of the tree stratum of masson pine in Qianyanzhou was 3324.43 t and 14,156.64 tc,respectively,whilst the values for Chinese fir were 1326.97 t and 713.27 tc. For slash pine the total biomass was 14,156.64 t (unturpentined) and 13,015.97 t (turpentined),and the total carbon storage was 7 688.21 tc (unturpentined) and 7068.78 tc (turpentined). Following the shaving of slash pine for resin,the total biomass was reduced by 1140.67 t and the total carbon storage fell by 619.43 tc.展开更多
We investigated a strategy to improve predicting capacity of plot-scale above-ground biomass (AGB) by fusion of LiDAR and Land- sat5 TM derived biophysical variables for subtropical rainforest and eucalypts dominate...We investigated a strategy to improve predicting capacity of plot-scale above-ground biomass (AGB) by fusion of LiDAR and Land- sat5 TM derived biophysical variables for subtropical rainforest and eucalypts dominated forest in topographically complex landscapes in North-eastern Australia. Investigation was carried out in two study areas separately and in combination. From each plot of both study areas, LiDAR derived structural parameters of vegetation and reflectance of all Landsat bands, vegetation indices were employed. The regression analysis was carded out separately for LiDAR and Landsat derived variables indi- vidually and in combination. Strong relationships were found with LiDAR alone for eucalypts dominated forest and combined sites compared to the accuracy of AGB estimates by Landsat data. Fusing LiDAR with Landsat5 TM derived variables increased overall performance for the eucalypt forest and combined sites data by describing extra variation (3% for eucalypt forest and 2% combined sites) of field estimated plot-scale above-ground biomass. In contrast, separate LiDAR and imagery data, andfusion of LiDAR and Landsat data performed poorly across structurally complex closed canopy subtropical minforest. These findings reinforced that obtaining accurate estimates of above ground biomass using remotely sensed data is a function of the complexity of horizontal and vertical structural diversity of vegetation.展开更多
[Objective] The purpose was to research the distribution characteristics of Tamarix species above-ground biomass of Tarim River's middle reaches and to find out best-fit linear-regression model of Tamarix species in ...[Objective] The purpose was to research the distribution characteristics of Tamarix species above-ground biomass of Tarim River's middle reaches and to find out best-fit linear-regression model of Tamarix species in this area.[Method] By dint of the most common sampling method PCQ,five samples in the middle reaches of Tarim River were collected.The best-fit linear-regression model of Tamarix species of this area was set up,based on the fieldwork and the model of Evangelista and obtained the distribution rules of Tamarix species of Tarim River's middle reaches.[Result] The result indicated that this model fitted for the estimation of aboveground biomass of the study area.According to the distribution rules of aboveground biomass,it was clear that underground water was the major element which decided the distribution of aboveground biomass.[Conclusion] The study provided theoretical basis for the calculation of biomass of Tamarix.展开更多
The quantification of carbon storage in vegetation biomass is a crucial factor in the estimation and mitigation of CO2 emissions.Globally,arid and semi-arid regions are considered an important carbon sink.However,they...The quantification of carbon storage in vegetation biomass is a crucial factor in the estimation and mitigation of CO2 emissions.Globally,arid and semi-arid regions are considered an important carbon sink.However,they have received limited attention and,therefore,it should be a priority to develop tools to quantify biomass at the local and regional scales.Individual plant variables,such as stem diameter and crown area,were reported to be good predictors of individual plant weight.Stand-level variables,such as plant cover and mean height,are also easy-to-measure estimators of above-ground biomass(AGB)in dry regions.In this study,we estimated the AGB in semi-arid woody vegetation in Northeast Patagonia,Argentina.We evaluated whether the AGB at the stand level can be estimated based on plant cover and to what extent the estimation accuracy can be improved by the inclusion of other field-measured structure variables.We also evaluated whether remote sensing technologies can be used to reliably estimate and map the regional mean biomass.For this purpose,we analyzed the relationships between field-measured woody vegetation structure variables and AGB as well as LANDSAT TM-derived variables.We obtained a model-based ratio estimate of regional mean AGB and its standard error.Total plant cover allowed us to obtain a reliable estimation of local AGB,and no better fit was attained by the inclusion of other structure variables.The stand-level plant cover ranged between 18.7%and 95.2%and AGB between about 2.0 and 70.8 Mg/hm^(2).AGB based on total plant cover was well estimated from LANDSAT TM bands 2 and 3,which facilitated a model-based ratio estimate of the regional mean AGB(approximately 12.0 Mg/hm^(2))and its sampling error(about 30.0%).The mean AGB of woody vegetation can greatly contribute to carbon storage in semi-arid lands.Thus,plant cover estimation by remote sensing images could be used to obtain regional estimates and map biomass,as well as to assess and monitor the impact of land-use change on the carbon balance,for arid and semi-arid regions.展开更多
Background:Information on above-ground biomass(AGB) is important for managing forest resource use at local levels,land management planning at regional levels,and carbon emissions reporting at national and internati...Background:Information on above-ground biomass(AGB) is important for managing forest resource use at local levels,land management planning at regional levels,and carbon emissions reporting at national and international levels.In many tropical developing countries,this information may be unreliable or at a scale too coarse for use at local levels.There is a vital need to provide estimates of AGB with quantifiable uncertainty that can facilitate land use management and policy development improvements.Model-based methods provide an efficient framework to estimate AGB.Methods:Using National Forest Inventory(NFI) data for a^1,000,000 ha study area in the miombo ecoregion,Zambia,we estimated AGB using predicted canopy cover,environmental data,disturbance data,and Landsat 8 OLI satellite imagery.We assessed different combinations of these datasets using three models,a semiparametric generalized additive model(GAM) and two nonlinear models(sigmoidal and exponential),employing a genetic algorithm for variable selection that minimized root mean square prediction error(RMSPE),calculated through cross-validation.We compared model fit statistics to a null model as a baseline estimation method.Using bootstrap resampling methods,we calculated 95% confidence intervals for each model and compared results to a simple estimate of mean AGB from the NFI ground plot data.Results:Canopy cover,soil moisture,and vegetation indices were consistently selected as predictor variables.The sigmoidal model and the GAM performed similarly;for both models the RMSPE was -36.8 tonnes per hectare(i.e.,57% of the mean).However,the sigmoidal model was approximately 30% more efficient than the GAM,assessed using bootstrapped variance estimates relative to a null model.After selecting the sigmoidal model,we estimated total AGB for the study area at 64,526,209 tonnes(+/- 477,730),with a confidence interval 20 times more precise than a simple designbased estimate.Conclusions:Our findings demonstrate that NFI data may be combined with freely available satellite imagery and soils data to estimate total AGB with quantifiable uncertainty,while also providing spatially explicit AGB maps useful for management,planning,and reporting purposes.展开更多
The purpose of this study was to quantify the changes in tree diversity and above-ground biomass associated with six land-use types in Kodagu district of India's Western Ghats. We collected data on species richnes...The purpose of this study was to quantify the changes in tree diversity and above-ground biomass associated with six land-use types in Kodagu district of India's Western Ghats. We collected data on species richness,composition and above-ground biomass(AGB) of trees,shrubs and herbs from 96 sample plots of 0.1 ha. Totals of83 species from 26 families were recorded across the landuses. Tree species richness, diversity and composition were significantly higher in evergreen forest(EGF) than in other land-uses. Similarly, stem density and basal area were greater in EGF compared to other land-uses. Detrended correspondence analysis(DCA) yielded three distinct groups along the land-use intensities and rainfall gradient on the first and second axes, respectively. The first DCA axis accounted for 45% and second axis for 35% of the total variation in species composition. Together the first two axes accounted for over 2/3 of the variation in species composition across land-use types. Across the land-uses,AGB ranged from 58.6 Mg ha-1 in rubber plantation to327.3 Mg ha-1 in evergreen forest. Our results showed that species diversity and AGB were negatively impacted bythe land-use changes. We found that coffee agroforests resembled natural forest and mixed species plantation in terms of tree diversity and biomass production, suggesting that traditional coffee farms can help to protect tree species, sustain smallholder production and offer opportunities for conservation of biodiversity and climate change mitigation.展开更多
Allometric models are necessary for estimating biomass in terrestrial ecosystems. Generalized allometric relationship exists for many tropical trees, but species- and region-specific models are often lacking. We devel...Allometric models are necessary for estimating biomass in terrestrial ecosystems. Generalized allometric relationship exists for many tropical trees, but species- and region-specific models are often lacking. We developed species-specific allometric models to predict aboveground biomass for 11 native tree species of the Sudanian savanna- woodlands. Diameters at the base and at breast height, with species means ranging respectively from 11 to 28 cm and 9 to 19 cm, and the height of the trees were used as predictor variables. Sampled trees spanned a wide range of sizes including the largest sizes these species can reach. As a response variable, the biomass of the trees was obtained through destructive sampling of 4 754 trees during wood harvesting. We used a stepwise multiple regression analysis with backward elimination procedure to develop models separately predicting, total biomass of the trees, stem biomass, and biomass of branches and twigs. All species- specific regression models relating biomass with measured tree dimen- sions were highly significant (p 〈 0.001). The biomass of branches and twigs was less predictable compared to stem biomass and total biomass, although their models required fewer predictors and predictor interac- tions. The best-fit equations for total above-ground biomass and stem biomass bad R2 〉 0.70, except for the Acacia species; for branches including twig biomass, R2-values varied from 0.749 for Anogeissus leiocarpa to 0.183 for Acacia macrostachya. The use of these equations in estimating available biomass will avoid destructive sampling, and aid in planning for sustainable use of these species.展开更多
The conversion of forests into agricultural lands is a major cause of deforestation,particularly in the mountain ecosystems of northern Thailand.It results in a rapid loss of biological diversity of both flora and fau...The conversion of forests into agricultural lands is a major cause of deforestation,particularly in the mountain ecosystems of northern Thailand.It results in a rapid loss of biological diversity of both flora and fauna.In addition,the above-ground biomass(AGB),which can be a major source of carbon storage,is also decreased.This study aimed to predict the AGB in Doi Suthep-Pui National Park,Chiang Mai province,based on land-use/land cover(LULC)changes from 2000 to 2030.Landsat-5 TM(2000)and Landsat-8 TM(2015)satellite images were analyzed to predict LULC changes to 2030.Temporary plots(30 m 930 m)were established in each LULC type for AGB analysis;trees with diameters at breast height≥4.5 cm were identified and measured.AGB of all LULC types were analyzed based on specific allometric equations of each type.The results show that area of forest and nonforested areas fluctuated during the study period.Through the first 15 years(2000–2015),5%(2.9 km^2)of forest changed to either agriculture or urban lands,especially mixed deciduous forest and lower montane forest.There was a similar trend in the 2030 prediction,showing the effect of forest fragmentation and the resultant high number of patches.Total AGB tended to decrease over the 30-year period from 12.5 to 10.6 t ha^-1 in the first and second periods,respectively.Deforestation was the main factor influencing the loss of AGB(30.6 t ha^-1)related to LULC changes.Furthermore,habitat loss would be expected to result in decreased biological diversity.Consequently,a management plan should be developed to avoid unsustainable land use changes,which may adversely affect human well-being.展开更多
Changes in forest biomass and soil organic carbon reserves have strong links to atmospheric carbon dioxide concentration.Human activities such as livestock grazing,forest fires,selective logging and firewood extractio...Changes in forest biomass and soil organic carbon reserves have strong links to atmospheric carbon dioxide concentration.Human activities such as livestock grazing,forest fires,selective logging and firewood extraction are the common disturbances that affect the carbon dynamics of the forest ecosystems.Here,we hypothesized that such anthropogenic activities significantly reduce the carbon stocks and accumulation rates in the tropical highland forests of the Sierra Madre de Chiapas in Southern Mexico.We sampled the Pinus oocarpa Scheide dominated forests within the elevation range of 900 to 1100 m above sea level in 2010,2014 and 2017.We measured the stand structural properties and used the reported allometric equations to calculate the tree carbon stocks.Stock change approach was used to calculate carbon accumulation rates.The results showed a gradual increase in carbon storage over the 7-year period from 2010 to 2017,but the rate of increase varied significantly between the study sites.The aboveground carbon stock was 107.25±11.77 Mg ha-1 for the site with lower anthropogenic intensity,compared to 74.29±16.85 Mg ha-1 for the site with higher intensity.The current annual increment for the forest with lower anthropogenic intensity was 7.81±0.65 Mg ha-1 a-1,compared to 3.87±1.03 Mg ha-1 a-1 in the site with high anthropogenic intensity.Although at varying rates,these forests are functioning as important carbon sinks.The results on carbon accumulation rates have important implications in greenhouse gas mitigations and forest change modelling in the context of changing global climate.展开更多
The effects of nitrate concentration on the capability of phosphorus uptake in the main anoxic stage were investigated.Meanwhile, the biomass fractions — heterotrophs, phosphateaccumulating organisms( PAOs),and nitri...The effects of nitrate concentration on the capability of phosphorus uptake in the main anoxic stage were investigated.Meanwhile, the biomass fractions — heterotrophs, phosphateaccumulating organisms( PAOs),and nitrifying organisms in a pilot-scale enhanced biological phosphorus removal( EBPR) system— were both experimentally and theoretically evaluated( from the mass balance calculations of organic matter, nitrogen and phosphorus),under optimum nitrate concentration in the main anoxic stage,in which the influent chemical oxygen demand( COD)concentration was stabilized at( 290 ± 10) mg·L- 1and the influent total phosphorus( TP) concentration was stabilized at( 7. 0 ± 0. 5)mg · L- 1. In long term operations,the process exhibited high performance in removing organic matter, nitrogen, and phosphorus. Approximately 46. 41% of organic matter,57. 21% of nitrogen,and 48. 14% of phosphorus were removed from the influent in the form of carbon dioxide,nitrogen gas,and polyphosphate,respectively. XH( heterotrophs),XPAO( PAOs),and XAUT( autotrophs) were regarded as the major organisms responsible for biomass production. The yield fractions of XHgrowth in the first anoxic,the second anoxic,and the aerobic stages were 10. 24%,19. 11%,and 19. 71%,respectively; the yield fractions of XPAO growth in the second anoxic and the aerobic stages were 24. 34% and19. 86%,respectively; the yield fraction of XAUTgrowth in the aerobic stage was 6. 74%. These results showed that XHand XPAOformed the major community. Moreover,a higher amount of XPAOgrowth on stored poly-hydroxyalkanoates( PHAs) under the anoxic condition was seen in this EBPR system for municipal wastewater treatment.展开更多
The research was aimed to estimate the carbon stocks of above-ground biomass (AGB) in Lesiolouna forest in Republic of Congo. The methodology of Allometric equations was used to measure the carbon stock of Lesio-louna...The research was aimed to estimate the carbon stocks of above-ground biomass (AGB) in Lesiolouna forest in Republic of Congo. The methodology of Allometric equations was used to measure the carbon stock of Lesio-louna tropical rainforest. The research was done with six circular plots each 40 m of diameter, with a distance of 100 m between each plot, depending on the topography of the site of the installation of these plots. The six studied plots are divided in two sites, which are: Iboubikro and Ngambali. Thus, in the six plots, there are three plots in Iboubikro site and three plots in Ngambali site. The results of this study show that the average carbon stock of aboveground biomass (AGB) in six plots was 170.673 t C ha-1. So, the average of carbon stock of aboveground biomass (ABG) in Iboubikro site was 204.693 t C ha-1 and in the Ngambali site was 136.652 t C ha-1. In this forest ecosystem, the high stock of carbon was obtained in Plot 3, which was in Iboubikro site. Plot 3 contains 20 trees and an average DBH of 24.56 cm. However, the lowest carbon stock was obtained in Plot 4, which was in Ngambali site. Also, Plot 4 contains 11 trees and an average DBH of 31.86 cm. The results of this research indicate that, the forests in the study area are an important carbon reservoir, and they can also play a key role in mitigation of climate change.展开更多
This study aimed to develop a biomass equation for estimating the total above-ground biomass for Colophospermum mopane (mopane) based on the pooled data from three study sites. The mopane woodlands in Botswana represe...This study aimed to develop a biomass equation for estimating the total above-ground biomass for Colophospermum mopane (mopane) based on the pooled data from three study sites. The mopane woodlands in Botswana represent 14.6% of Botswana’s total area. The woodlands directly or indirectly support the livelihood of the majority of the rural population by providing wood and non-wood products. However, there is limited information on the pattern, trends and distribution of woody biomass production and their primary, environmental, and climatic determinants in different parts of Botswana. All the data were collected by destructive sampling from three study sites in Botswana. Stratified random sampling was based on the stem diameter at breast height (1.3 m from the ground or Diameter at Breast Height (DBH)). A total of 30 sample trees at each study site were measured, felled and weighed. The data from the three sites were pooled together, and the study employed regression analysis to examine the nature of relationships between total above-ground biomass (dependent variable) and five independent variables: 1) total tree height;2) crown diameter;3) stem diameters at 0.15 m;1.3 m (DBH) and 3 m from the ground respectively. There were significant relationships between all the independent variables and the dependent variable. However, DBH emerged as the strongest predictor of total tree above-ground biomass for mopane. The equation lnBiomass=-1.163+2.190lnDBH was adopted for use in the indirect estimation of total tree above-ground biomass for mopane in Botswana.展开更多
基金the National Natural Science Foundation of China(Nos.42061134020,32070380)the Natural Science Foundation of Shandong Province(No.ZR2019ZD17)。
文摘Light plays an important role in the photosynthesis and metabolic process of microalgae.However,how different light conditions regulate the biomass production and protein accumulation of microalgae is mostly unknown.In this study,the influence of different light conditions,including light colors,densities,and light:dark cycles on the cell growth and biochemical composition of Spirulina platensis was symmetrically characterized.Under different colored lights,S.platensis all shows an increase trend within the increased light intensity ranges;however,each showing different optimal light intensities.At the same light intensity,different colored lights show different growth rate of S.platensis following the sequence of red>white>green>yellow>blue.The maximum growth rate and protein accumulation were determined as 21.88 and 5.10 mg/(L·d)when illuminated under red LED.The energy efficiency of different light sources was calculated and ranked as red>white>blue≈green>yellow.Transcriptomic analysis suggests that red light can promote cell growth and protein accumulation by upregulating genes related to photosynthesis,carbon fixation,and C-N metabolism pathways.This study provides a conducive and efficient way to promote biomass production and protein accumulation of S.platensis by regulating light conditions.
基金funded by One Hundred Young Persons Project of Institute of Mountain Hazards and Environment (No.SDSQB-2010-02)the National Natural Science Foundation of China (No.41001177)Knowledge Innovation Program of the Chinese Academy of Sciences (Nos.KZCX2-YW-QN31,KZCX2-XB3-08)
文摘The temporal dynamics of the biomass, as well as the carbon (C), nitrogen (N), phosphorus (P) concentrations and accumulation contents, in above- and below-ground vegetation components were determined in the alpine steppe vegetation of Northern Tibet during the growing season of 2OLO. The highest levels of total biomass (311.68 g m-2), total C (115.95 g m-2), total N (2.60 g m-2), and total P (0.90 g m-2) accumulation contents were obtained in August in 2010. Further, biomass and nutrient stocks in the below-ground components were higher than those of the above-ground components. The dominant species viz., Stipa purpurea and Carex moorcrofli had lower biomass and C, N, P accumulations than the companion species which including Oxytropis. spp., Artemisia capillaris Thunb., Aster tataricus L., and SO on.
基金This work was supported by the National Key Research and Development Program of China(No.2019YFA0607304).
文摘Accumulation of vegetation biomass is a crucial process for carbon fixation in the early stage of afforestation and a primary driving force for subsequent ecological functions.Accurately assessing the storage and allocation of elements in plantations is essential for their management and estimating carbon sink capacity.However,current knowledge of the storage and allocation patterns of elements within plant organs at the community level is limited.To clarify the distribution patterns of elements in plant organs at the community level,we measured the biomass within plant organs of five typical plantations in the early stage of afforestation in the loess hilly-gully region.We assessed the main drivers of element accumulation and distribution by employing redundancy analysis and random forest.Results revealed significant differences in biomass storages among plantations and a significant effect of plantation type on the storages of elements within plant organs.Furthermore,the dominant factors influencing C–N–P storage and allocation at the community level were found to be inconsistent.While the storage of elements was mainly influenced by stand openness,total soil nitrogen,and plant diversity,the allocation of elements in organs was mainly influenced by stand openness and soil water content.Overall,the spatial structure of the community had an important influence on both element storage and allocation,but soil conditions played a more important role in element allocation than in storage.Random forest results showed that at the community level,factors influencing element storage and allocation within plant organs often differed.The regulation of elemental storage could be regulated by the major growth demand resources,while the allocation was regulated by other limiting class factors,which often differed from those that had a significant effect on element storage.The differences in plant organ elemental storage and allocation drivers at the community level reflect community adaptation strategies and the regulation of resources by ecosystems in combination with plants.Our study provides valuable insights for enhancing plantation C sink estimates and serves as a reference for regulating element storage and allocation at the local scale.
基金supported by Erciyes University Scientific Research Project Fund (No.FBA 07-32)
文摘In order to understand its response towards nickel stress, watercress (Nasturtium officinale R. Br.) was exposed to nickel (1-25 mg/L) for 1, 3, 5 and 7 days. The accumulation and translocation of nickel were determined and the influence of nickel on biomass, protein content and enzymatic antioxidants was examined for both roots and leaves. It was determined that N. o fficinale could accumulate appreciable amounts of Ni in both roots and leaves. Nickel accumulated particularly in the roots of plants. Biomass increased at low nickel concentrations but certain measurable change was not found at high concentrations. Under stress conditions the antioxidant enzymes were up-regulated compared to control. An increase in protein content and enzyme activities was observed at moderate exposure conditions followed by a decline at both roots and leaves. The maximum enzyme activities were observed at different exposure conditions. Our results showed that N. officinale had the capacity to overcome nickel-induced stress especially at moderate nickel exposure. Therefore, N. officinale may be used as a phytoremediator in moderately polluted aquatic ecosystems.
文摘Roadside trees are effective natural solutions for mitigating climate change. Despite the usefulness of trees to carbon sequestration, there is a dearth of information on the estimation of biomass and carbon stock for roadside trees in the study area. This study aimed to estimate the carbon stock and carbon dioxide equivalent of roadside trees. A complete enumeration of trees was carried out in Kétou, Pobè and Sakété within the communes of the Plateau Department, Bénin Republic. Total height and diameter at breast height were measured from trees along the roads while individual wood density value was obtained from wood density database. The allometric method of biomass estimation was adopted for the research. The results showed that the total estimations for above-ground biomass, carbon stock and carbon equivalent from all the enumerated roadside trees were 154.53 mt, 72.63 mt and 266.55 mt, respectively. The results imply that the roadside trees contain a substantial amount of carbon stock that can contribute to climate change mitigation through carbon sequestration.
文摘The dynamics of biomass accumulation during the growing period, the yield of leafy stalks and tubers, and the nutrient concentration and nutrient uptake of the yield were investigated for two Jerusalem artichoke varieties (Tápiói Korai and Tápiói Sima) in a field experiment involving mineral fertilisation. Considerable differences were observed between the dynamics of leafy stalk and tuber development in Tápiói Korai which has a short vegetation period and Tápiói Sima where the vegetation period is long. The maximum dry matter ratio between the tuber yield and the leafy stalk yield was 1:1 for Tápiói Korai and 1:4.5 for Tápiói Sima. During the period when the maximum aboveground biomass developed in Tápiói Korai, 100 kg.ha-1 N and P fertiliser resulted in the highest leafy stalk yield (38.34 t.ha-1), while for Tápiói Sima, which developed a much greater leafy stalk mass, the highest aboveground biomass yield (78-80 t.ha-1) was given in response to 200 kg.ha-1 N supplemented by P and K fertiliser. Both artichoke varieties produced the great-est tuber yield at a N rate of 200 kg.ha-1, supplemented with P and K fertiliser. The nutrient concentration in the leafy stalks was highest on the 85th day of the vegetation period, prior to intensive dry matter accumulation in the leafy stalks and before tuber formation began. In both varieties the maximum nutrient uptake was recorded on the 155th day. Great differences were observed between the varieties in terms of specific nutrient uptake. For a tuber yield of 10 t, together with the corresponding leafy stalk yield, the specific nutrient uptake of the Tápiói Korai variety amounted to 48 kg N, 10 kg P, 83 kg K, 30 kg Ca and 10 kg Mg, while for Tápiói Sima these figures were 162 kg N, 30 kg P, 300 kg K, 84 kg Ca and 45 kg Mg.
基金Funding for this research was obtained from CONICy T(Comisión Nacional de Investigación Científica y Tecnológica)for the grant Fondecyt No1150877funding was derived from the CONICy T doctoral grant No 21150802
文摘Background: Forest productivity has a pivotal role in human well-being. Vegetation quantity, niche complementarity, mass-ratio, and soil resources are alternative/complementary ecological mechanisms driving productivity. One challenge in current forest management depends on identifying and manipulating these mechanisms to enhance productivity. This study assessed the extent to which these mechanisms control aboveground biomass productivity(AGBP) of a Chilean mediterranean-type matorral. AGBP measured as tree aboveground biomass changes over a 7-years period, was estimated for twelve 25 m × 25 m plots across a wide range of matorral compositions and structures. Variables related to canopy structure, species and functional diversity, species and functional dominance, soil texture, soil water and soil nitrogen content were measured as surrogates of the four mechanisms proposed. Linear regression models were used to test the hypotheses. A multimodel inference based on the Akaike’s information criterion was used to select the best models explaining AGBP and for identifying the relative importance of each mechanism.Results: Vegetation quantity(tree density) and mass-ratio(relative biomass of Cryptocarya alba, a conservative species) were the strongest drivers increasing AGBP, while niche complementarity(richness species) and soil resources(sand, %) had a smaller effect either decreasing or increasing AGBP, respectively. This study provides the first assessment of alternative mechanisms driving AGBP in mediterranean forests of Chile. There is strong evidence suggesting that the vegetation quantity and mass-ratio mechanisms are key drivers of AGBP, such as in other tropical and temperate forests. However, in contrast with other studies from mediterranean-type forests, our results show a negative effect of species diversity and a small effect of soil resources on AGBP.Conclusion: AGBP in the Chilean matorral depends mainly on the vegetation quantity and mass-ratio mechanisms.The findings of this study have implications for matorral restoration and management for the production of timber and non-timber products and carbon sequestration.
基金supported by the 948 Program of the State Forestry Administration (2009-4-43)the National Natura Science Foundation of China (No.30870420)
文摘Boreal forests play an important role in global environment systems. Understanding boreal forest ecosystem structure and function requires accurate monitoring and estimating of forest canopy and biomass. We used partial least square regression (PLSR) models to relate forest parameters, i.e. canopy closure density and above ground tree biomass, to Landsat ETM+ data. The established models were optimized according to the variable importance for projection (VIP) criterion and the bootstrap method, and their performance was compared using several statistical indices. All variables selected by the VIP criterion passed the bootstrap test (p〈0.05). The simplified models without insignificant variables (VIP 〈1) performed as well as the full model but with less computation time. The relative root mean square error (RMSE%) was 29% for canopy closure density, and 58% for above ground tree biomass. We conclude that PLSR can be an effective method for estimating canopy closure density and above ground biomass.
基金The International Science and Technology Cooperative Program of China, No.2006DFB91920Knowledge Innovation Project of Chinese Academy of Sciences, No.KZCX2-YW-305-3National Key Technology R&D Program, No.2006BAC08B00
文摘The authors developed a model to estimate annual tree growth based on tree-ring data (Abbr. TGTRing model) derived from the trunk at 0.5,1.3 and 2.5 m height. This model was applied to estimate the annual biomass and carbon accumulation of a plantation in Qianyanzhou Red-Soil Hill Comprehensive Development Experimental Station of CAS in Taihe County,Jiangxi Province (Abbr. Qianyanzhou). The results showed that the inflexion points of the biomass and carbon accumulation curves occur at 17 and 18 years of age,respectively,in masson pine,whilst both inflexion points occurred at 15 years in slash pine and Chinese fir. The biomass and carbon accumulation in Chinese fir proved to be greater in the last 20 years than in the other species,with 171.697 t/hm2 and 92.29 tc/hm2,respectively. masson pine,with a biomass of 133.84 t/hm2 and a carbon accumulation of 73.92 tc/hm2 was the lowest whilst slash pine was intermediate with a biomass of 147.639 t/hm2 (unturpentined) and 135.743 t/hm2 (turpentined),and a carbon accumulation of 80.18 tc/hm2 (unturpentined) and 73.72 tc/hm2 (turpentined). In 2006,the total biomass and carbon storage of the tree stratum of masson pine in Qianyanzhou was 3324.43 t and 14,156.64 tc,respectively,whilst the values for Chinese fir were 1326.97 t and 713.27 tc. For slash pine the total biomass was 14,156.64 t (unturpentined) and 13,015.97 t (turpentined),and the total carbon storage was 7 688.21 tc (unturpentined) and 7068.78 tc (turpentined). Following the shaving of slash pine for resin,the total biomass was reduced by 1140.67 t and the total carbon storage fell by 619.43 tc.
基金made possible by a scholarship from the Australian Government(International Postgraduate Research Scholarship-awarded in 2009)a Southern Cross University Postgraduate Research Scholarship(SCUPRS in 2009)
文摘We investigated a strategy to improve predicting capacity of plot-scale above-ground biomass (AGB) by fusion of LiDAR and Land- sat5 TM derived biophysical variables for subtropical rainforest and eucalypts dominated forest in topographically complex landscapes in North-eastern Australia. Investigation was carried out in two study areas separately and in combination. From each plot of both study areas, LiDAR derived structural parameters of vegetation and reflectance of all Landsat bands, vegetation indices were employed. The regression analysis was carded out separately for LiDAR and Landsat derived variables indi- vidually and in combination. Strong relationships were found with LiDAR alone for eucalypts dominated forest and combined sites compared to the accuracy of AGB estimates by Landsat data. Fusing LiDAR with Landsat5 TM derived variables increased overall performance for the eucalypt forest and combined sites data by describing extra variation (3% for eucalypt forest and 2% combined sites) of field estimated plot-scale above-ground biomass. In contrast, separate LiDAR and imagery data, andfusion of LiDAR and Landsat data performed poorly across structurally complex closed canopy subtropical minforest. These findings reinforced that obtaining accurate estimates of above ground biomass using remotely sensed data is a function of the complexity of horizontal and vertical structural diversity of vegetation.
基金Supported by Sino-German Cooperation Program(PP[2007]3086)~~
文摘[Objective] The purpose was to research the distribution characteristics of Tamarix species above-ground biomass of Tarim River's middle reaches and to find out best-fit linear-regression model of Tamarix species in this area.[Method] By dint of the most common sampling method PCQ,five samples in the middle reaches of Tarim River were collected.The best-fit linear-regression model of Tamarix species of this area was set up,based on the fieldwork and the model of Evangelista and obtained the distribution rules of Tamarix species of Tarim River's middle reaches.[Result] The result indicated that this model fitted for the estimation of aboveground biomass of the study area.According to the distribution rules of aboveground biomass,it was clear that underground water was the major element which decided the distribution of aboveground biomass.[Conclusion] The study provided theoretical basis for the calculation of biomass of Tamarix.
基金This research was funded by the National University of Río Negro Research Project(40-C-658)the Research Project National Institute of Agricultural Technology,University Association of Higher Agricultural Education and National Council of Veterinary Deans(Proyect 940175).
文摘The quantification of carbon storage in vegetation biomass is a crucial factor in the estimation and mitigation of CO2 emissions.Globally,arid and semi-arid regions are considered an important carbon sink.However,they have received limited attention and,therefore,it should be a priority to develop tools to quantify biomass at the local and regional scales.Individual plant variables,such as stem diameter and crown area,were reported to be good predictors of individual plant weight.Stand-level variables,such as plant cover and mean height,are also easy-to-measure estimators of above-ground biomass(AGB)in dry regions.In this study,we estimated the AGB in semi-arid woody vegetation in Northeast Patagonia,Argentina.We evaluated whether the AGB at the stand level can be estimated based on plant cover and to what extent the estimation accuracy can be improved by the inclusion of other field-measured structure variables.We also evaluated whether remote sensing technologies can be used to reliably estimate and map the regional mean biomass.For this purpose,we analyzed the relationships between field-measured woody vegetation structure variables and AGB as well as LANDSAT TM-derived variables.We obtained a model-based ratio estimate of regional mean AGB and its standard error.Total plant cover allowed us to obtain a reliable estimation of local AGB,and no better fit was attained by the inclusion of other structure variables.The stand-level plant cover ranged between 18.7%and 95.2%and AGB between about 2.0 and 70.8 Mg/hm^(2).AGB based on total plant cover was well estimated from LANDSAT TM bands 2 and 3,which facilitated a model-based ratio estimate of the regional mean AGB(approximately 12.0 Mg/hm^(2))and its sampling error(about 30.0%).The mean AGB of woody vegetation can greatly contribute to carbon storage in semi-arid lands.Thus,plant cover estimation by remote sensing images could be used to obtain regional estimates and map biomass,as well as to assess and monitor the impact of land-use change on the carbon balance,for arid and semi-arid regions.
基金provided by the United States Agency for International Development under grant number 3FS-G-11-00002 to the Center for International Forestry Research,entitled the Nyimba Forest Projectprovided by The University of British Columbia
文摘Background:Information on above-ground biomass(AGB) is important for managing forest resource use at local levels,land management planning at regional levels,and carbon emissions reporting at national and international levels.In many tropical developing countries,this information may be unreliable or at a scale too coarse for use at local levels.There is a vital need to provide estimates of AGB with quantifiable uncertainty that can facilitate land use management and policy development improvements.Model-based methods provide an efficient framework to estimate AGB.Methods:Using National Forest Inventory(NFI) data for a^1,000,000 ha study area in the miombo ecoregion,Zambia,we estimated AGB using predicted canopy cover,environmental data,disturbance data,and Landsat 8 OLI satellite imagery.We assessed different combinations of these datasets using three models,a semiparametric generalized additive model(GAM) and two nonlinear models(sigmoidal and exponential),employing a genetic algorithm for variable selection that minimized root mean square prediction error(RMSPE),calculated through cross-validation.We compared model fit statistics to a null model as a baseline estimation method.Using bootstrap resampling methods,we calculated 95% confidence intervals for each model and compared results to a simple estimate of mean AGB from the NFI ground plot data.Results:Canopy cover,soil moisture,and vegetation indices were consistently selected as predictor variables.The sigmoidal model and the GAM performed similarly;for both models the RMSPE was -36.8 tonnes per hectare(i.e.,57% of the mean).However,the sigmoidal model was approximately 30% more efficient than the GAM,assessed using bootstrapped variance estimates relative to a null model.After selecting the sigmoidal model,we estimated total AGB for the study area at 64,526,209 tonnes(+/- 477,730),with a confidence interval 20 times more precise than a simple designbased estimate.Conclusions:Our findings demonstrate that NFI data may be combined with freely available satellite imagery and soils data to estimate total AGB with quantifiable uncertainty,while also providing spatially explicit AGB maps useful for management,planning,and reporting purposes.
基金funded by the Indian Institute of Remote Sensing,Dehradun,India under IIRS-VCP project entitled“National Carbon Pool Assessment”(Project Number:(UAS(B)/DR/GOI/246/2011-12)。
文摘The purpose of this study was to quantify the changes in tree diversity and above-ground biomass associated with six land-use types in Kodagu district of India's Western Ghats. We collected data on species richness,composition and above-ground biomass(AGB) of trees,shrubs and herbs from 96 sample plots of 0.1 ha. Totals of83 species from 26 families were recorded across the landuses. Tree species richness, diversity and composition were significantly higher in evergreen forest(EGF) than in other land-uses. Similarly, stem density and basal area were greater in EGF compared to other land-uses. Detrended correspondence analysis(DCA) yielded three distinct groups along the land-use intensities and rainfall gradient on the first and second axes, respectively. The first DCA axis accounted for 45% and second axis for 35% of the total variation in species composition. Together the first two axes accounted for over 2/3 of the variation in species composition across land-use types. Across the land-uses,AGB ranged from 58.6 Mg ha-1 in rubber plantation to327.3 Mg ha-1 in evergreen forest. Our results showed that species diversity and AGB were negatively impacted bythe land-use changes. We found that coffee agroforests resembled natural forest and mixed species plantation in terms of tree diversity and biomass production, suggesting that traditional coffee farms can help to protect tree species, sustain smallholder production and offer opportunities for conservation of biodiversity and climate change mitigation.
基金provided by Swedish International Development Cooperation Agency (Sida)
文摘Allometric models are necessary for estimating biomass in terrestrial ecosystems. Generalized allometric relationship exists for many tropical trees, but species- and region-specific models are often lacking. We developed species-specific allometric models to predict aboveground biomass for 11 native tree species of the Sudanian savanna- woodlands. Diameters at the base and at breast height, with species means ranging respectively from 11 to 28 cm and 9 to 19 cm, and the height of the trees were used as predictor variables. Sampled trees spanned a wide range of sizes including the largest sizes these species can reach. As a response variable, the biomass of the trees was obtained through destructive sampling of 4 754 trees during wood harvesting. We used a stepwise multiple regression analysis with backward elimination procedure to develop models separately predicting, total biomass of the trees, stem biomass, and biomass of branches and twigs. All species- specific regression models relating biomass with measured tree dimen- sions were highly significant (p 〈 0.001). The biomass of branches and twigs was less predictable compared to stem biomass and total biomass, although their models required fewer predictors and predictor interac- tions. The best-fit equations for total above-ground biomass and stem biomass bad R2 〉 0.70, except for the Acacia species; for branches including twig biomass, R2-values varied from 0.749 for Anogeissus leiocarpa to 0.183 for Acacia macrostachya. The use of these equations in estimating available biomass will avoid destructive sampling, and aid in planning for sustainable use of these species.
基金supported by the Center for Advanced Studies in Tropical Natural Resources(CASTNaR)Kasetsart University,Bangkok,Thailandthe Kasetsart University Research and Development Institute(KURDI)。
文摘The conversion of forests into agricultural lands is a major cause of deforestation,particularly in the mountain ecosystems of northern Thailand.It results in a rapid loss of biological diversity of both flora and fauna.In addition,the above-ground biomass(AGB),which can be a major source of carbon storage,is also decreased.This study aimed to predict the AGB in Doi Suthep-Pui National Park,Chiang Mai province,based on land-use/land cover(LULC)changes from 2000 to 2030.Landsat-5 TM(2000)and Landsat-8 TM(2015)satellite images were analyzed to predict LULC changes to 2030.Temporary plots(30 m 930 m)were established in each LULC type for AGB analysis;trees with diameters at breast height≥4.5 cm were identified and measured.AGB of all LULC types were analyzed based on specific allometric equations of each type.The results show that area of forest and nonforested areas fluctuated during the study period.Through the first 15 years(2000–2015),5%(2.9 km^2)of forest changed to either agriculture or urban lands,especially mixed deciduous forest and lower montane forest.There was a similar trend in the 2030 prediction,showing the effect of forest fragmentation and the resultant high number of patches.Total AGB tended to decrease over the 30-year period from 12.5 to 10.6 t ha^-1 in the first and second periods,respectively.Deforestation was the main factor influencing the loss of AGB(30.6 t ha^-1)related to LULC changes.Furthermore,habitat loss would be expected to result in decreased biological diversity.Consequently,a management plan should be developed to avoid unsustainable land use changes,which may adversely affect human well-being.
基金We thank BIOMASA A.C.and Mexico REDD+program for supporting part of the fieldwork.We are thankful to Carrie Mitchell for English revision of the manuscript.We acknowledge the constructive comments from the reviewers on the earlier version of the article.
文摘Changes in forest biomass and soil organic carbon reserves have strong links to atmospheric carbon dioxide concentration.Human activities such as livestock grazing,forest fires,selective logging and firewood extraction are the common disturbances that affect the carbon dynamics of the forest ecosystems.Here,we hypothesized that such anthropogenic activities significantly reduce the carbon stocks and accumulation rates in the tropical highland forests of the Sierra Madre de Chiapas in Southern Mexico.We sampled the Pinus oocarpa Scheide dominated forests within the elevation range of 900 to 1100 m above sea level in 2010,2014 and 2017.We measured the stand structural properties and used the reported allometric equations to calculate the tree carbon stocks.Stock change approach was used to calculate carbon accumulation rates.The results showed a gradual increase in carbon storage over the 7-year period from 2010 to 2017,but the rate of increase varied significantly between the study sites.The aboveground carbon stock was 107.25±11.77 Mg ha-1 for the site with lower anthropogenic intensity,compared to 74.29±16.85 Mg ha-1 for the site with higher intensity.The current annual increment for the forest with lower anthropogenic intensity was 7.81±0.65 Mg ha-1 a-1,compared to 3.87±1.03 Mg ha-1 a-1 in the site with high anthropogenic intensity.Although at varying rates,these forests are functioning as important carbon sinks.The results on carbon accumulation rates have important implications in greenhouse gas mitigations and forest change modelling in the context of changing global climate.
基金National Natural Science Foundation of China(No.51308253)Jilin Province Science and Technology Development Projects,China(No.20130522076JH)
文摘The effects of nitrate concentration on the capability of phosphorus uptake in the main anoxic stage were investigated.Meanwhile, the biomass fractions — heterotrophs, phosphateaccumulating organisms( PAOs),and nitrifying organisms in a pilot-scale enhanced biological phosphorus removal( EBPR) system— were both experimentally and theoretically evaluated( from the mass balance calculations of organic matter, nitrogen and phosphorus),under optimum nitrate concentration in the main anoxic stage,in which the influent chemical oxygen demand( COD)concentration was stabilized at( 290 ± 10) mg·L- 1and the influent total phosphorus( TP) concentration was stabilized at( 7. 0 ± 0. 5)mg · L- 1. In long term operations,the process exhibited high performance in removing organic matter, nitrogen, and phosphorus. Approximately 46. 41% of organic matter,57. 21% of nitrogen,and 48. 14% of phosphorus were removed from the influent in the form of carbon dioxide,nitrogen gas,and polyphosphate,respectively. XH( heterotrophs),XPAO( PAOs),and XAUT( autotrophs) were regarded as the major organisms responsible for biomass production. The yield fractions of XHgrowth in the first anoxic,the second anoxic,and the aerobic stages were 10. 24%,19. 11%,and 19. 71%,respectively; the yield fractions of XPAO growth in the second anoxic and the aerobic stages were 24. 34% and19. 86%,respectively; the yield fraction of XAUTgrowth in the aerobic stage was 6. 74%. These results showed that XHand XPAOformed the major community. Moreover,a higher amount of XPAOgrowth on stored poly-hydroxyalkanoates( PHAs) under the anoxic condition was seen in this EBPR system for municipal wastewater treatment.
基金Chinese and Congolese governments by China Scholarship Council(CSC),Beijing Forestry University,Universite Marien Ngouabi,MDDEFE-REDD+/WRI Project and Lesio-louna Project for supporting this research.
文摘The research was aimed to estimate the carbon stocks of above-ground biomass (AGB) in Lesiolouna forest in Republic of Congo. The methodology of Allometric equations was used to measure the carbon stock of Lesio-louna tropical rainforest. The research was done with six circular plots each 40 m of diameter, with a distance of 100 m between each plot, depending on the topography of the site of the installation of these plots. The six studied plots are divided in two sites, which are: Iboubikro and Ngambali. Thus, in the six plots, there are three plots in Iboubikro site and three plots in Ngambali site. The results of this study show that the average carbon stock of aboveground biomass (AGB) in six plots was 170.673 t C ha-1. So, the average of carbon stock of aboveground biomass (ABG) in Iboubikro site was 204.693 t C ha-1 and in the Ngambali site was 136.652 t C ha-1. In this forest ecosystem, the high stock of carbon was obtained in Plot 3, which was in Iboubikro site. Plot 3 contains 20 trees and an average DBH of 24.56 cm. However, the lowest carbon stock was obtained in Plot 4, which was in Ngambali site. Also, Plot 4 contains 11 trees and an average DBH of 31.86 cm. The results of this research indicate that, the forests in the study area are an important carbon reservoir, and they can also play a key role in mitigation of climate change.
文摘This study aimed to develop a biomass equation for estimating the total above-ground biomass for Colophospermum mopane (mopane) based on the pooled data from three study sites. The mopane woodlands in Botswana represent 14.6% of Botswana’s total area. The woodlands directly or indirectly support the livelihood of the majority of the rural population by providing wood and non-wood products. However, there is limited information on the pattern, trends and distribution of woody biomass production and their primary, environmental, and climatic determinants in different parts of Botswana. All the data were collected by destructive sampling from three study sites in Botswana. Stratified random sampling was based on the stem diameter at breast height (1.3 m from the ground or Diameter at Breast Height (DBH)). A total of 30 sample trees at each study site were measured, felled and weighed. The data from the three sites were pooled together, and the study employed regression analysis to examine the nature of relationships between total above-ground biomass (dependent variable) and five independent variables: 1) total tree height;2) crown diameter;3) stem diameters at 0.15 m;1.3 m (DBH) and 3 m from the ground respectively. There were significant relationships between all the independent variables and the dependent variable. However, DBH emerged as the strongest predictor of total tree above-ground biomass for mopane. The equation lnBiomass=-1.163+2.190lnDBH was adopted for use in the indirect estimation of total tree above-ground biomass for mopane in Botswana.