期刊文献+
共找到2,269篇文章
< 1 2 114 >
每页显示 20 50 100
Influence of Blade Number on the Performance of Hydraulic Turbines in the Transition Stage
1
作者 Fengxia Shi Guangbiao Zhao +1 位作者 Yucai Tang Dedong Maand Xiangyun Shi 《Fluid Dynamics & Materials Processing》 EI 2024年第11期2617-2636,共20页
To analyze the effect of blade number on the performance of hydraulic turbines during the transient stage in which theflow rate is not constant,six hydraulic turbines with different blade numbers are considered.The ins... To analyze the effect of blade number on the performance of hydraulic turbines during the transient stage in which theflow rate is not constant,six hydraulic turbines with different blade numbers are considered.The instantaneous hydraulic performance of the turbine and the pressure pulsation acting on the impeller are investigated numerically by using the ANSYS CFX software.The ensuing results are compared with the outcomes of experimental tests.It is shown that thefluctuation range of the pressure coefficient increases with time,but the corresponding range for the transient hydraulic efficiency decreases gradually when theflow velocity transits to larger values.During the transition to smallflow velocity,thefluctuation range of the pressure coefficient gradually decreases as time passes,but the correspondingfluctuation range of its transient hydraulic efficiency gradually becomes larger.Thefluctuation range in the Z9 case is small during the transition.The main frequency of transient hydraulic efficiency pulsation is equal to the blade frequency.At the main frequency,Z7 has the largest amplitude of the hydraulic efficiency pulsation,Z10 has the smallest amplitude,and the difference between Z7 and Z9 is limited.As the number of blades grows,the pressure pulsation during the transition process gradually decreases,but the pressure pulsation of Z10 at the volute tongue is larger.In the steady state,Z9 has the highest efficiency and in the transient stage,the pressure coefficientfluctuation range is small.Accordingly,for the hydraulic turbine Z9,the performance is optimal. 展开更多
关键词 hydraulic turbine blade number transient process pressurefluctuation transient hydraulic performance
下载PDF
Erosion Characteristics of Hydraulic Turbine Guide-Vane End Clearance in Sediment Water Flow: A Simplified Model Analysis 被引量:4
2
作者 Wei Han Jie Wang +2 位作者 Jingbo Kang Lianyuan Li Guoyi Peng 《Journal of Flow Control, Measurement & Visualization》 2017年第4期111-126,共16页
The effect of clearance flow on the erosion characteristics of a circular cylinder with a backward facing step in sediment-laden water flow is analyzed numerically with the mixture model and the re-normalization group... The effect of clearance flow on the erosion characteristics of a circular cylinder with a backward facing step in sediment-laden water flow is analyzed numerically with the mixture model and the re-normalization group (RNG) k-ε turbulence model. Thirty-six monitoring points are set up on different stream surfaces to collect information on the impact erosion under different flow conditions, where the Initial Sediment Volume Fraction (ISVF) is set to 0.05, 0.075, 0.1, 0.125, and 0.15;particle diameter is set to 0.05 mm, 0.15 mm, 0.25 mm, 0.35 mm, and 0.45 mm respectively. The distribution of particle velocity and Local Solid-Phase Volume Fraction (LSVF) along different stream surfaces are calculated, based on which the trend of erosion is qualitatively evaluated. ISVF and particle diameter play different roles on the impact erosion index parameter () on the different wetted walls. Relative wear rate of numerical estimation agrees well with the practical one under the same working condition. Numerical analysis demonstrates that guide vane with a negative curvature end surface (concave surface) can decrease erosion damage effectively, which may provide a reference for optimal design and maintenance of hydraulic turbine. 展开更多
关键词 EROSION Characteristics hydraulic turbine GUIDE VANE SOLID-LIQUID Two Phase Flow Numerical Simulation
下载PDF
Feasibility analysis for monitoring fatigue crack in hydraulic turbine blades using acoustic emission technique 被引量:2
3
作者 王向红 朱昌明 +1 位作者 毛汉领 黄振峰 《Journal of Central South University》 SCIE EI CAS 2009年第3期444-450,共7页
In order to investigate the feasibility of monitoring the fatigue cracks in turbine blades using acoustic emission (AE) technique, the AE characteristics of fatigue crack growth were studied in the laboratory. And the... In order to investigate the feasibility of monitoring the fatigue cracks in turbine blades using acoustic emission (AE) technique, the AE characteristics of fatigue crack growth were studied in the laboratory. And the characteristics were compared with those of background noise received from a real hydraulic turbine unit. It is found that the AE parameters such as the energy and duration can qualitatively describe the fatigue state of the blades. The correlations of crack propagation rates and acoustic emission count rates vs stress intensity factor (SIF) range are also obtained. At the same time, for the specimens of 20SiMn under the given testing conditions, it is noted that the rise time and duration of events emitted from the fatigue process are lower than those from the background noise; amplitude range is 49-74 dB, which is lower than that of the noise (90-99 dB); frequency range of main energy of crack signals is higher than 60 kHz while that in the noise is lower than 55 kHz. Thus, it is possible to extract the useful crack signals from the noise through appropriate signal processing methods and to represent the crack status of blade materials by AE parameters. As a result, it is feasible to monitor the safety of runners using AE technique. 展开更多
关键词 FATIGUE CRACK acoustic emission hydraulic turbine BLADE
下载PDF
Hydraulic turbine system identification and predictive control based on GASA-BPNN 被引量:2
4
作者 Xiao-ping Jiang Zi-ting Wang +1 位作者 Hong Zhu Wen-shuai Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第7期1240-1247,共8页
Based on the characteristics of nonlinearity,multi-case,and multi-disturbance,it is difficult to establish an accurate parameter mod-el on the hydraulic turbine system which is limited by the degree of fitting between... Based on the characteristics of nonlinearity,multi-case,and multi-disturbance,it is difficult to establish an accurate parameter mod-el on the hydraulic turbine system which is limited by the degree of fitting between parametric model and actual model,and the design of con-trol algorithm has a certain degree of limitation.Aiming at the modeling and control problems of hydraulic turbine system,this paper proposes hydraulic turbine system identification and predictive control based on genetic algorithm-simulate anneal and back propagation neural network(GASA-BPNN),and the output value predicted by GASA-BPNN model is fed back to the nonlinear optimizer to output the control quantity.The results show that the output speed of the traditional control system increases greatly and the speed of regulation is slow,while the speed of GASA-BPNN predictive control system increases little and the regulation speed is obviously faster than that of the traditional control system.Compared with the output response of the traditional control of the hydraulic turbine governing system,the neural network predictive control-ler used in this paper has better effect and stronger robustness,solves the problem of poor generalization ability and identification accuracy of the turbine system under variable conditions,and achieves better control effect. 展开更多
关键词 hydraulic turbine system system identification genetic algorithm simulated annealing algorithm predictive control
下载PDF
Computer Simulation of Turbulent Flow through a Hydraulic Turbine Draft Tube 被引量:1
5
作者 HU Ying CHENG Heming +1 位作者 WANG Quanlong YU Zhikun 《Wuhan University Journal of Natural Sciences》 EI CAS 2006年第3期649-652,共4页
Based on the Naviev-Stokes equations and the standard κ-ε turbulence model, this paper presents the derivation of the governing equations for the turbulent flow field in a draft tube. The mathematical model for the ... Based on the Naviev-Stokes equations and the standard κ-ε turbulence model, this paper presents the derivation of the governing equations for the turbulent flow field in a draft tube. The mathematical model for the turbulent flow through a draft tube is set up when the boundary conditions, including the inlet boundary conditions, the outlet boundary conditions and the wall boundary conditions, have been implemented. The governing equations are formulated in a discrete form on a staggered grid system by the finite volume method. The second-order central difference approximation and hybrid scheme are used for discretization. The computation and analysis on internal flow through a draft tube have been carried out by using the simplee algorithm and cfx-tasc flow software so as to obtain the simulated flow fields. The calculation results at the design operating condition for the draft tube are presented in this paper. Thereby, an effective method for simulating the internal flow field in a draft tube has been explored. 展开更多
关键词 hydraulic turbine draft tube turbulent flow numerical simulation
下载PDF
A Fatigue Analysis of a Hydraulic Francis Turbine Runner 被引量:2
6
作者 Miriam Flores Gustavo Urquiza José María Rodríguez 《World Journal of Mechanics》 2012年第1期28-34,共7页
In this work, the estimation of crack initiation life of a hydraulic Francis turbine runner is presented. The life prediction is based on the local strain approach to predict the initiation life. First, the analysis i... In this work, the estimation of crack initiation life of a hydraulic Francis turbine runner is presented. The life prediction is based on the local strain approach to predict the initiation life. First, the analysis is carried out in air and in water condition and the runner’s natural frequencies were calculated using the finite element (FE) method. The analysis in air is compared with experimental analysis in order to have a representative model of real runner and subsequently the numerical analysis was perform in water. In the case of the runner immersed in water, the added mass effect due to the fluid structure interaction (FSI) is considered. Second, the static and dynamic stresses were calculated according to life estimation. For the calculation of static stresses, the pressure distribution of water and the centrifugal forces were applied to the runner. The dynamic stresses were estimated for interactions between the guide vane and the runner. Lastly, the estimation of the crack initiation life of the runner was obtained. 展开更多
关键词 hydraulic FRANCIS turbine CRACK FINITE Element MODAL Analysis Fluid-Structure Interaction
下载PDF
A real-time measuring technology for studying distortion of hydraulic turbine blade castings during heat treatment process 被引量:1
7
作者 Yu Hailiang Kang Jinwu +3 位作者 Nie Gang Long Haimin Hao Xiaokun Huang Tianyou 《China Foundry》 SCIE CAS 2011年第3期300-304,共5页
During heat treatment process, the distortion behavior inevitably appears in hydraulic turbine blade castings. In this research, a technology was developed for real-time measurement of the distortion in hydraulic turb... During heat treatment process, the distortion behavior inevitably appears in hydraulic turbine blade castings. In this research, a technology was developed for real-time measurement of the distortion in hydraulic turbine blade castings at the still air cooling and forced air cooling stages during heat treatment process. The method was used to measure the distortion behavior at the cooling stages in both normalizing and tempering processes. At the normalization, the distortion at the blade comer near outlet side undergoes four stages with alternating bending along positive and negative directions. At the tempering stage, the distortion could be divided into two steps. The temperature difference between the two surfaces of blade casting was employed to analyze the distortion mechanism. The measured results could be applied to guide the production, and the machining allowance could be reduced by controlling the distortion behavior. 展开更多
关键词 real-time measuring DISTORTION hydraulic turbine blade casting heat treatment
下载PDF
Influence of Different Transition Modes on the Performances of a Hydraulic Turbine 被引量:1
8
作者 Fengxia Shi Yucai Tang +2 位作者 Dedong Ma Xiangyun Shi Guangbiao Zhao 《Fluid Dynamics & Materials Processing》 EI 2023年第10期2481-2497,共17页
In order to analyze the response of a hydraulic turbine to a variation in the operating conditions,different laws of variation in time of the massflow rate have been considered.After validating the overall numerical fr... In order to analyze the response of a hydraulic turbine to a variation in the operating conditions,different laws of variation in time of the massflow rate have been considered.After validating the overall numerical framework through comparison with relevant experiments,the performances of the considered turbine have been analyzed from afluid-dynamic point of view.The results show that different time profiles of the massflow rate(in this work,for simplicity,referred to as“transition functions”)have a varying influence on the transient behavior of the turbine.When a quadratic function is considered for the case of largeflow,the transient head and torque increase gradually with time,thefluctuation amplitude of the transient hydraulic efficiency at the main frequency is the largest,and thefluctuation amplitude of the radial force is the smallest.For the smallflow case,the time profile with exponential nature leads to the best results.The transient head and torque decrease gradually with time,the pulsation amplitude of the transient hydraulic efficiency is the largest at the main frequency,and the pulsation amplitude of the radial force is the smallest. 展开更多
关键词 Transition functions hydraulic turbine transition process radial resultant force
下载PDF
2D Model of Guide Vane for Low Head Hydraulic Turbine: Analytical and Numerical Solution of Inverse Problem 被引量:2
9
作者 Romuald Puzyrewski Zbigniew Krzemianowski 《Journal of Mechanics Engineering and Automation》 2014年第3期195-202,共8页
Low-head hydraulic turbines are the subjects to individual approach of design. This comes from the fact that hydrological conditions are not of a standard character. Therefore, the design method of the hydraulic turbi... Low-head hydraulic turbines are the subjects to individual approach of design. This comes from the fact that hydrological conditions are not of a standard character. Therefore, the design method of the hydraulic turbine stage has a great importance for those who may be interested in such an investment. As a first task in a design procedure the guide vane is considered. The proposed method is based on the solution of the inverse problem within the flame of 2D model. By the inverse problem authors mean a design of the blade shapes for given flow conditions. In the paper analytical solution for the simple cylindrical shape of a guide vane is presented. For the more realistic cases numerical solutions according to the axis-symmetrical model of the flow are also presented. The influence of such parameters as the inclination of trailing edge, the blockage factor due to blade thickness, the influence of loss due to dissipation are shown for the chosen simple geometrical example. 展开更多
关键词 hydraulic turbines inverse problem in a turbomachinery guide vanes design.
下载PDF
Two Concepts of Guide Vane Profile Design for a Low Head Hydraulic Turbine 被引量:1
10
作者 Romuald Puzyrewski Zbigniew Krzemianowski 《Journal of Mechanics Engineering and Automation》 2015年第4期201-209,共9页
Two concepts of the guide vanes channels design for a low head hydraulic turbine were investigated using 2D and 3D models. Model 2D was used to generate the geometry of profiles which form a blade channel. After that ... Two concepts of the guide vanes channels design for a low head hydraulic turbine were investigated using 2D and 3D models. Model 2D was used to generate the geometry of profiles which form a blade channel. After that by means of 3D commercial code (ANSYS/Fluent v. 15), the designed cascades were examined. The characteristic parameters of compared guide vanes have been presented. The problem of low head hydraulic turbine design is important from the technical point of view for usually not typical environmental circumstances, in which the hydropower plants are planned. 展开更多
关键词 hydraulic turbine inverse problem TURBOMACHINERY guide vane design.
下载PDF
Prediction of Hydraulic Stability of Francis Turbines of Three Gorges Hydropower Station
11
作者 TIAN Zi qinSenior Engineer, Design Institute, Changjiang Water Resources Commission, Wuhan 430010,China LIU Jing wang Professor, Design Institute, Changjiang Water Resources Commission, Wuhan 430010,China 《人民长江》 北大核心 2001年第S1期5-9,共5页
The Francis turbine of Three Gorges hydropower station is one of the large turbines with great head variation in the world. The operational stability of the turbine has been the top subject for departments of design, ... The Francis turbine of Three Gorges hydropower station is one of the large turbines with great head variation in the world. The operational stability of the turbine has been the top subject for departments of design, research, manufacture and operation to be concerned about. During the course of preparing bid invitation documents and executing the contract for the Three Gorges left power plants turbogenerator units, the hydraulic stability of the turbine was regarded as the most important problem and specific stability indexes of the model turbine and the prototype turbine were respectively specified in the contract. In the model tests for turbine model acceptance, pressure fluctuation phenomena in the case of partial load were found to be different from the usual ones as people had known. Within the range of operating water head, there existed a peak value zone of pressure fluctuations with higher frequencies, and large amplitude pressure fluctuations simultaneously occurred in several localities from the spiral case entrance to the draft tube. On the basis of test results from the model, the influence of cavitation coefficient and aeration on pressure fluctuations is analyzed, and some measures to improve the hydraulic stability of turbines of Three Gorges hydropower station are expounded. 展开更多
关键词 FRANCIS turbine hydraulic stability PRESSURE FLUCTUATION model test Sanxia Multipurpose PROJECT
下载PDF
A Feasibility Study of Power Generation from Sewage Using a Hollowed Pico-Hydraulic Turbine
12
作者 Tomomi Uchiyama Satoshi Honda +1 位作者 Tomoko Okayama Tomohiro Degawa 《Engineering》 SCIE EI 2016年第4期510-517,共8页
This study is concerned with the feasibility of power generation using a pico-hydraulic turbine from sewage flowing in pipes. First, the sewage flow rate at two connection points to the Toyogawa River-Basin Sewerage, ... This study is concerned with the feasibility of power generation using a pico-hydraulic turbine from sewage flowing in pipes. First, the sewage flow rate at two connection points to the Toyogawa River-Basin Sewerage, Japan, was explored for over a year to elucidate the hydraulic energy potential of the sewage. Second, the performance of the pico-hydraulic turbine was investigated via laboratory experiments that supposed the turbine to be installed in the sewage pipe at the connection points. This study indicates that the connection points have hydraulic potential that can be used for power generation throughout the year. It also demonstrates that the pico-hydraulic turbine can be usefully employed for power generation from sewage flowing in the pipe at the connection points. 展开更多
关键词 Pico-hydraulic turbine SewagePower generation Connection point hydraulic potential
下载PDF
Terminal Sliding Mode Controllers for Hydraulic Turbine Governing System with Bifurcated Penstocks under Input Saturation
13
作者 Ji Liang Zhihuan Chen +2 位作者 Xiaohui Yuan Binqiao Zhang Yanbin Yuan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第5期603-629,共27页
Terminal sliding mode controller method is introduced to enhance the regulation performance of the hydraulic turbine governing system(HTGS).For the purpose of describing the characteristics of controlled system and de... Terminal sliding mode controller method is introduced to enhance the regulation performance of the hydraulic turbine governing system(HTGS).For the purpose of describing the characteristics of controlled system and deducing the control rule,a nonlinear mathematic model of hydraulic turbine governing system with bifurcated penstocks(HTGSBF)under control input saturation is established,and the input/output state linearization feedback approach is used to obtain the relationship between turbine speed and controller output.To address the control input saturation problem,an adaptive assistant system is designed to compensate for controller truncation.Numerical simulations have been conducted under fixed point stabilization and periodic orbit tracking conditions to compare the dynamic performances of proposed terminal sliding mode controllers and conventional sliding mode controller.The results indicate that the proposed terminal sliding mode controllers not only have a faster response and accurate tracking results,but also own a stronger robustness to the system parameter variations.Moreover,the comparisons between the proposed terminal sliding mode controllers and current most often used proportional-integral-differential(PID)controller,as well its variant NPID controller,are discussed at the end of this paper,where the superiority of the terminal sliding mode controllers also have been verified. 展开更多
关键词 hydraulic turbine governing system bifurcated penstock sliding mode controller terminal sliding mode controller saturation compensator
下载PDF
Simulink/MATLAB Model for Assessing the Use of a Centrifugal Pump as a Hydraulic Turbine
14
作者 Peter E. Jenkins Artem Kuryachy 《World Journal of Mechanics》 2018年第7期253-271,共19页
A centrifugal pump used as a hydraulic turbine in producing power for a microhydropower system is multifaceted. Centrifugal pumps are far more ubiquitous than turbines in the turbomachinery market, therefore being mor... A centrifugal pump used as a hydraulic turbine in producing power for a microhydropower system is multifaceted. Centrifugal pumps are far more ubiquitous than turbines in the turbomachinery market, therefore being more readily available to the consumer. Additionally, they are cheaper. Hydraulic turbines undergo rigorous CFD simulation design and testing to establish their blade geometries and ranges of operation. This results in a refined but very expensive final product. Centrifugal pumps are thus presented as a logical alternative seeing that they can physically perform the same task as a hydropower turbine albeit at a reduced efficiency. This paper presents the results of an analysis and simulation to assess the use of a centrifugal pump as a hydraulic turbine. 展开更多
关键词 CENTRIFUGAL PUMP hydraulic turbine SIMULINK MATLAB Simulation
下载PDF
Giant Hydraulic Turbine Runner under construction
15
《Electricity》 1992年第1期56-56,共1页
Four giant hydraulic turbines of Yantan Hydropower Sta-tion located on the Hongshui River,Guangxi Provinceare now under construction by the Harbin Electric Machinery Works(HEMW)of China Harbin Power-Plant Equipment Co... Four giant hydraulic turbines of Yantan Hydropower Sta-tion located on the Hongshui River,Guangxi Provinceare now under construction by the Harbin Electric Machinery Works(HEMW)of China Harbin Power-Plant Equipment Corporation(GROUP).The turbine will become the largest in dimension forFrancis type turbine ever made in China.The external diameter ofthe runner is 8.6 m,which is supposed to be ranked No.3 among thelargest runners of this category in the world.Each turbine is 展开更多
关键词 RUNNER turbine RUNNER GIANT turbine supposed ranked HARBIN hydraulic manuf
下载PDF
WC-M coating to improve resistance of hydraulic turbines to cavitation erosion and abrasion
16
作者 王飚 王宇东 张自华 《中国有色金属学会会刊:英文版》 CSCD 2003年第4期893-897,共5页
WC M hard faced ceramic coating was made on the substrate of steel by means of high velocity oxygen fuel flame (HVOF) thermal spraying. The resistance of this coating to cavitation erosion and abrasion (CEA) is about ... WC M hard faced ceramic coating was made on the substrate of steel by means of high velocity oxygen fuel flame (HVOF) thermal spraying. The resistance of this coating to cavitation erosion and abrasion (CEA) is about 2.5 times higher than that of 188 stainless steel, and is about 1.5 times higher than that of Stellite alloy (CoCrWC) made in America. When this coating were applied to the hydraulic power stations with more silt content in the flow water, which reaches 50 kg/m 3, the resistance of above mentioned coating to CEA was about 2 times to that of NiCr alloy coating, and is about 45 times to that of OCr13Ni4Mo stainless steel. In addition, the micro hardness, microstructures and electron probe analyzing of the WC M coating are all discussed. 展开更多
关键词 WC-M涂层 磨损 水轮机 涡轮 气穴 腐蚀
下载PDF
基于SimHydraulics的兆瓦级风机液压型变桨系统仿真 被引量:13
17
作者 胡东 赵湘文 蔡旭 《机床与液压》 北大核心 2009年第10期205-208,共4页
基于MATLAB/SimHydraulics工具箱,对兆瓦级风机的液压型变桨系统进行了仿真研究。借助SimHydraulics工具箱内建的液压元器件模型,可以直接对变桨系统的液压原理图进行建模与仿真。仿真结果表明:利用SimHydraulics工具箱对兆瓦级风机变... 基于MATLAB/SimHydraulics工具箱,对兆瓦级风机的液压型变桨系统进行了仿真研究。借助SimHydraulics工具箱内建的液压元器件模型,可以直接对变桨系统的液压原理图进行建模与仿真。仿真结果表明:利用SimHydraulics工具箱对兆瓦级风机变桨系统进行仿真研究的可行性,为进一步对风力发电机组全工况仿真提供了保证。 展开更多
关键词 变桨 风机 液压 Simhydraulics
下载PDF
基于SimHydraulics的风力机液压变桨执行机构建模与稳定性分析 被引量:1
18
作者 魏聪梅 孔屹刚 +2 位作者 安高成 宋福荣 刘志奇 《液压气动与密封》 2013年第12期40-43,共4页
该文在前期液压变桨执行机构系统设计的研究基础上,利用Matlab/Simulink中SimHydraulics建立了完整的风力机液压变桨执行机构物理仿真模型,同时给出了传递函数数学建模结果,并对两种建模方法得到的液压变桨执行机构模型的稳定性作了比... 该文在前期液压变桨执行机构系统设计的研究基础上,利用Matlab/Simulink中SimHydraulics建立了完整的风力机液压变桨执行机构物理仿真模型,同时给出了传递函数数学建模结果,并对两种建模方法得到的液压变桨执行机构模型的稳定性作了比较分析,最后通过SimHydraulics所建液压变桨执行机构模型与风力机整机模型联合仿真,完成了风力机的变桨功率控制仿真实验。仿真结果表明,相比传递函数、状态方程、功率键合图等数学建模方法,SimHydraulics物理建模方法所建模型精确性更高,基于该模型的风力机功率控制、稳定性、可靠性等相关分析研究的准确性和可靠性也较高。 展开更多
关键词 风力机 液压变桨执行机构 Simhydraulics 建模 稳定性
下载PDF
Numerical Simulation of Pressure Fluctuations in a Large Francis Turbine Runner 被引量:9
19
作者 WANG Fujun LIAO Cuilin TANG Xuelin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第6期1198-1204,共7页
The pressure fluctuation caused by unsteady flow in runner is one of the main reasons of vibration for a large Francis hydraulic turbine. It directly affects the steady operation of the hydraulic turbine unit. The exi... The pressure fluctuation caused by unsteady flow in runner is one of the main reasons of vibration for a large Francis hydraulic turbine. It directly affects the steady operation of the hydraulic turbine unit. The existing research of the pressure fluctuation in hydraulic turbine mainly focuses on the unsteady flow in draft tube. Accurate distribution of pressure fluctuations inside a runner is not very clear. In this paper, the numerical method for predicting the pressure fluctuations in runner is investigated and the numerical simulation is performed for a large Francis hydraulic turbine. It is proved that the combination of shear-stress transport(SST) k-o) turbulence model and pressure-implicit with splitting of operators(PISO) algorithm could give more reliable prediction of pressure fluctuations in runner. The frequencies of pressure fluctuations in runner are affected by the flow in guide vane and the flow in draft tube The first dominant frequency is significantly determined by the flow in draft tube, especially at part load condition. This frequency is approximately equal to one-third of the runner rotating frequency. The evident second dominant frequency is exactly equal to the guide vane passing frequency. The peak-to-peak amplitudes of pressure fluctuations in runner at small guide vane open angle are larger than that at large open angle at the same operating head. The amplitudes at points on blade pressure surface are generally greater than that on suction surface. The research results could be used to direct the hydraulic design and operation stability improvement of a large Francis hydraulic turbine. 展开更多
关键词 hydraulic turbine RUNNER pressure fluctuation numerical simulation
下载PDF
Guide Vane with Current Plate to Improve Efficiency of Cross Flow Turbine 被引量:1
20
作者 Kiyoshi Kokubu Toshiaki Kanemoto Keisuke Yamasaki 《Open Journal of Fluid Dynamics》 2013年第2期28-35,共8页
To get the sustainable society, the hydropower with not only the large but also the small/mini/micro capacities has been paid attention to in the power generation. The cross flow turbine can work effectively at the co... To get the sustainable society, the hydropower with not only the large but also the small/mini/micro capacities has been paid attention to in the power generation. The cross flow turbine can work effectively at the comparatively low head and/or low discharge, then the runner and the turbine profile has been optimizing. In this paper, the model turbine was prepared in accordance with the traditional design, and the performance and the flow condition were investigated experimentally at the various operating conditions. The hydraulic efficiency is doubtlessly maximal while the guide vane is at the normal/design position, and deteriorates in the lower discharges adjusted by the guide vane. Such deteriorations are brought from the unacceptable flow conditions in the inlet nozzle. To improve the efficiency dramatically in the lower discharge, the guide vane installed in the inlet nozzle was equipped with the current plate, and the fruitful effects of the plate on the efficiency were confirmed experimentally. 展开更多
关键词 hydraulic turbine Cross Flow turbine Guide VANE INLET NOZZLE hydraulic EFFICIENCY Discharge
下载PDF
上一页 1 2 114 下一页 到第
使用帮助 返回顶部