期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Abrasive Wear Mechanisms of Sand Particles Intruding into ATM Roller-scraper Tribosystem 被引量:1
1
作者 WU Tonghai DIAO Dongfeng FANG Liang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第5期905-910,共6页
The roller-scraper tribosystem of automatic teller machine(ATM) plays an important role in reliable cash requests.However,the abrasive wear of the polymer tribosystem becomes a prominent problem when operating in sa... The roller-scraper tribosystem of automatic teller machine(ATM) plays an important role in reliable cash requests.However,the abrasive wear of the polymer tribosystem becomes a prominent problem when operating in sandy environment.The wear behavior of the tribosystem in a simulated sandy environment has been experimentally studied previously.However the abrasive wear mechanism of roller-scraper tribosystems is still unknown to new design.The wear rates of polymer rollers were examined comprehensively and several jumping variations were found in the full data extent.Three wear stages were classified by the magnitude of wear rates,and different dominant wear mechanisms corresponding with different particle diameter were found by examining the worn surfaces.Accordingly a presumption was proposed that wear mechanisms in different stages were correlated with sand particles of different diameter.In a verification experiment,three typical wear mechanisms including cutting,ploughing,and wedging were found corresponding with different wear stages by scanning electron microscope(SEM) examination.A theoretical analysis was carried out with a simplified sphere particle intrusion model and the transfer conditions for different wear mechanisms were studied referring to the slip-field theory.As a main result,three typical wear models versus friction coefficient of particle/roller,and particle radius were mapped with variant hardness of the polymer roller and ratio of contact shear stress to bulk shear stress.The result illuminated the abrasive wear mechanism during particle intrusion.Particularly,the critical transition conditions gave the basis for improving the wear performance of roller-scraper tribosystems in a sandy environment. 展开更多
关键词 tribosystem abrasive wear mechanism
下载PDF
Investigation of high-speed abrasion behavior of an abradable seal rubber in aero-engine fan application 被引量:5
2
作者 Haijun XUAN Na ZHANG +2 位作者 Bin LU Lijun CHENG Weirong HONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第4期1615-1623,共9页
Abradable seal rubber has been widely used in aero-engine fans to improve their efficiency by reducing the clearance between rotating and stationary components. To investigate the high-speed scraping behavior between ... Abradable seal rubber has been widely used in aero-engine fans to improve their efficiency by reducing the clearance between rotating and stationary components. To investigate the high-speed scraping behavior between a vulcanized silicone rubber and a Ti-6Al-4V fan blade and evaluate the abradable performance of seal rubber, abrasion tests were conducted at a blade tip velocity of 50–300 m/s with an incursion rate of 100 lm/s. The influences of the blade tip velocity on the wear mechanism and interaction forces were specially analyzed. It is shown that abrasive wear and pattern wear are the predominant wear mechanisms, and pattern wear can be seen as the emergence and propagation of cracks. With an increase of the blade tip velocity, both of the final incursion depth and wear mass loss of seal rubber exhibit growth trends. The gradual changes of rubbing forces with an increase of rubbing time are the characteristic of abrasive wear, and force curves with unstable mutations are a reflection of pattern wear. At a constant incursion rate of 100 lm/s, the maximum values of interaction forces decrease first and then grow with an increase of the blade tip velocity, and the blade tip velocity of 150 m/s becomes the cut-off point between abrasive wear and pattern wear. 展开更多
关键词 Abradability Abrasion test equipment Aero-engine Silicone seal rubber wear mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部