The in-situ synthesized mullite bonded SiC ceramics for solar thermal tower plant were prepared from Silicon carbide (SIC), manufactured aluminum hydroxide (Al(OH)3) and Suzhou kaolin via semi-dry pressing and p...The in-situ synthesized mullite bonded SiC ceramics for solar thermal tower plant were prepared from Silicon carbide (SIC), manufactured aluminum hydroxide (Al(OH)3) and Suzhou kaolin via semi-dry pressing and pressureless firing. The results indicate that sample B3 (designed mullite content 15 wt%) fired at 1 400 ℃ exhibited optimal performance with a bending strength of 97.41 MPa. Sample B3 can withstand 30-cycles thermal shock without cracking (wind cooling from 1 100 ℃ to room temperature), and the bending strength after thermal shock decreased by 17.92%. When the service temperature is 600℃, the thermal diffusivity, specific heat capacity, thermal conductivity and heat capacity are 6.48× 10-2 cm:.s-1, 0.69 kJ·kg-1. K-1, 9.62 W·m-1·K-1 and 977.76 kJ·kg-1, respectively. The XRD and SEM results show that SiC, mullite, or-quartz, and tridymite are connected closely, which gives the material a good bending strength. After 30-time thermal shock cycles, the structure of samples becomes loose. SiC grains are intersectingly arranged with rodshape mullite, exhibiting a favorable thermal shock resistance. The addition of Al(OH)3 and Suzhou kaolin can accelerate the synthesis of mullite, thus to reduce the firing temperature effectively. The volume effect of tfidymite is relatively small, improving the thermal shock resistance of materials. A higher designed muUite content yields a lower loss rate of bending strength. The mullite content should not be more than 15 wt% or else the bending strength would be diminished.展开更多
The extended Brinkman Darcy model for momentum equations and an energy equation is used to calculate the unsteady natural convection Couette flow of a viscous incompressible heat generating/absorbing fluid in a vertic...The extended Brinkman Darcy model for momentum equations and an energy equation is used to calculate the unsteady natural convection Couette flow of a viscous incompressible heat generating/absorbing fluid in a vertical channel (formed by two infinite vertical and parallel plates) filled with the fluid-saturated porous medium. The flow is triggered by the asymmetric heating and the accelerated motion of one of the bounding plates. The governing equations are simplified by the reasonable dimensionless parameters and solved analytically by the Laplace transform techniques to obtain the closed form solutions of the velocity and temperature profiles. Then, the skin friction and the rate of heat transfer are consequently derived. It is noticed that, at different sections within the vertical channel, the fluid flow and the temperature profiles increase with time, which are both higher near the moving plate. In particular, increasing the gap between the plates increases the velocity and the temperature of the fluid, however, reduces the skin friction and the rate of heat transfer.展开更多
基金Funded by the National Basic Research Program(973 Program)(No.2010CB227105)
文摘The in-situ synthesized mullite bonded SiC ceramics for solar thermal tower plant were prepared from Silicon carbide (SIC), manufactured aluminum hydroxide (Al(OH)3) and Suzhou kaolin via semi-dry pressing and pressureless firing. The results indicate that sample B3 (designed mullite content 15 wt%) fired at 1 400 ℃ exhibited optimal performance with a bending strength of 97.41 MPa. Sample B3 can withstand 30-cycles thermal shock without cracking (wind cooling from 1 100 ℃ to room temperature), and the bending strength after thermal shock decreased by 17.92%. When the service temperature is 600℃, the thermal diffusivity, specific heat capacity, thermal conductivity and heat capacity are 6.48× 10-2 cm:.s-1, 0.69 kJ·kg-1. K-1, 9.62 W·m-1·K-1 and 977.76 kJ·kg-1, respectively. The XRD and SEM results show that SiC, mullite, or-quartz, and tridymite are connected closely, which gives the material a good bending strength. After 30-time thermal shock cycles, the structure of samples becomes loose. SiC grains are intersectingly arranged with rodshape mullite, exhibiting a favorable thermal shock resistance. The addition of Al(OH)3 and Suzhou kaolin can accelerate the synthesis of mullite, thus to reduce the firing temperature effectively. The volume effect of tfidymite is relatively small, improving the thermal shock resistance of materials. A higher designed muUite content yields a lower loss rate of bending strength. The mullite content should not be more than 15 wt% or else the bending strength would be diminished.
文摘The extended Brinkman Darcy model for momentum equations and an energy equation is used to calculate the unsteady natural convection Couette flow of a viscous incompressible heat generating/absorbing fluid in a vertical channel (formed by two infinite vertical and parallel plates) filled with the fluid-saturated porous medium. The flow is triggered by the asymmetric heating and the accelerated motion of one of the bounding plates. The governing equations are simplified by the reasonable dimensionless parameters and solved analytically by the Laplace transform techniques to obtain the closed form solutions of the velocity and temperature profiles. Then, the skin friction and the rate of heat transfer are consequently derived. It is noticed that, at different sections within the vertical channel, the fluid flow and the temperature profiles increase with time, which are both higher near the moving plate. In particular, increasing the gap between the plates increases the velocity and the temperature of the fluid, however, reduces the skin friction and the rate of heat transfer.