The effect of nitrate (NO3^-) on rice (Oryza sativa L.) growth as well as N absorption and assimilation during different growth stages was examined using three typical rice cultivars. Dry weight, yield, N uptake, ...The effect of nitrate (NO3^-) on rice (Oryza sativa L.) growth as well as N absorption and assimilation during different growth stages was examined using three typical rice cultivars. Dry weight, yield, N uptake, nitrate reductase activity (NRA) in leaves, and glutamine synthetase activity (GSA) in roots and leaves during their entire growth periods, as well as the kinetic parameters of ammonium (NH4^+) uptake at the seedling stage, were measured with solution culture experiments. Results indicated that addition of NH4^+-N and NO3^-N at a ratio of 75:25 (NH4^++NO3^- treatment) when compared with that of NH4^+-N alone (NH4^+ treatment) increased the dry weight of ‘Nanguang' cultivar by 30% and ‘Yunjing 38' cultivar by 31%, and also increased their grain yield by 21% and 17%, respectively. For the four growth stages, the total N accumulation in plants increased by an average of 36% for ‘Nanguang' and 31% for ‘Yunjing 38', whereas the increasing effect of NO3^- in the ‘4007' cultivar was only found at the seedling stage, in the NH4^++NO3^- treatment compared to the NH4^+ treatment, NRA in the leaves increased by 2.09 folds, and GSA increased by 92% in the roots and 52% in the leaves of the three cultivars. NO3^- supply increased the maximum uptake rate (Vmax) in the ‘Nanguang' and ‘Yunjing 38' cultivars, reflecting that the NO3^- itself, not the increasing N concentration, increased the uptake rate of NH4^+ by rice. There was no effect on the apparent Michaelis-Menten constant (Kin) of the three cultivars. Thus, some replacement of NH4^+ with NO3^-could greatly improve the growth of rice plants, mainly on account of the increased uptake of NH4^+ promoted by NO3^-, and future studies should focus on the molecular mechanism of the increased uptake of NH4^+ by NO3^-.展开更多
Ten genotypes of rice (Oryza sativa L.) were grown for 30 d in complete nutrient solution with 1 mmol/L (N-insufficient),4 mmol/L (N-moderate) and 10 mmol/L (N-high) nitrogen levels,and nitrogen efficiency (N...Ten genotypes of rice (Oryza sativa L.) were grown for 30 d in complete nutrient solution with 1 mmol/L (N-insufficient),4 mmol/L (N-moderate) and 10 mmol/L (N-high) nitrogen levels,and nitrogen efficiency (NE) was analyzed.Growth performance,measured in terms of fresh weight,dry weight and lengths of root and shoot,was higher in N-efficient than in N-inefficient rice genotypes at low N level.Of these 10 genotypes,Suraksha was identified as the most N-efficient,while Vivek Dhan the most N-inefficient.To find out the physiological basis of this difference,the nitrate uptake rate of root and the activities of nitrate assimilatory enzymes in leaves of N-efficient and N-inefficient rice genotypes were studied.Uptake experiments revealed the presence of two separate nitrate transporter systems mediating high-and low-affinity nitrate uptake.Interestingly,the nitrate uptake by the roots of Suraksha is mediated by both high-and low-affinity nitrate transporter systems,while that of Vivek Dhan by only low-affinity nitrate transporter system.Study of the activities and expression levels of nitrate assimilatory enzymes in N-efficient and N-inefficient rice genotypes showed that nitrate reductase (NR) and glutamine synthetase (GS) play important roles in N assimilation under low-nitrogen conditions.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 30390082 and 40471074)
文摘The effect of nitrate (NO3^-) on rice (Oryza sativa L.) growth as well as N absorption and assimilation during different growth stages was examined using three typical rice cultivars. Dry weight, yield, N uptake, nitrate reductase activity (NRA) in leaves, and glutamine synthetase activity (GSA) in roots and leaves during their entire growth periods, as well as the kinetic parameters of ammonium (NH4^+) uptake at the seedling stage, were measured with solution culture experiments. Results indicated that addition of NH4^+-N and NO3^-N at a ratio of 75:25 (NH4^++NO3^- treatment) when compared with that of NH4^+-N alone (NH4^+ treatment) increased the dry weight of ‘Nanguang' cultivar by 30% and ‘Yunjing 38' cultivar by 31%, and also increased their grain yield by 21% and 17%, respectively. For the four growth stages, the total N accumulation in plants increased by an average of 36% for ‘Nanguang' and 31% for ‘Yunjing 38', whereas the increasing effect of NO3^- in the ‘4007' cultivar was only found at the seedling stage, in the NH4^++NO3^- treatment compared to the NH4^+ treatment, NRA in the leaves increased by 2.09 folds, and GSA increased by 92% in the roots and 52% in the leaves of the three cultivars. NO3^- supply increased the maximum uptake rate (Vmax) in the ‘Nanguang' and ‘Yunjing 38' cultivars, reflecting that the NO3^- itself, not the increasing N concentration, increased the uptake rate of NH4^+ by rice. There was no effect on the apparent Michaelis-Menten constant (Kin) of the three cultivars. Thus, some replacement of NH4^+ with NO3^-could greatly improve the growth of rice plants, mainly on account of the increased uptake of NH4^+ promoted by NO3^-, and future studies should focus on the molecular mechanism of the increased uptake of NH4^+ by NO3^-.
基金Research grant from University Grant Commission,Government of India
文摘Ten genotypes of rice (Oryza sativa L.) were grown for 30 d in complete nutrient solution with 1 mmol/L (N-insufficient),4 mmol/L (N-moderate) and 10 mmol/L (N-high) nitrogen levels,and nitrogen efficiency (NE) was analyzed.Growth performance,measured in terms of fresh weight,dry weight and lengths of root and shoot,was higher in N-efficient than in N-inefficient rice genotypes at low N level.Of these 10 genotypes,Suraksha was identified as the most N-efficient,while Vivek Dhan the most N-inefficient.To find out the physiological basis of this difference,the nitrate uptake rate of root and the activities of nitrate assimilatory enzymes in leaves of N-efficient and N-inefficient rice genotypes were studied.Uptake experiments revealed the presence of two separate nitrate transporter systems mediating high-and low-affinity nitrate uptake.Interestingly,the nitrate uptake by the roots of Suraksha is mediated by both high-and low-affinity nitrate transporter systems,while that of Vivek Dhan by only low-affinity nitrate transporter system.Study of the activities and expression levels of nitrate assimilatory enzymes in N-efficient and N-inefficient rice genotypes showed that nitrate reductase (NR) and glutamine synthetase (GS) play important roles in N assimilation under low-nitrogen conditions.