期刊文献+
共找到43篇文章
< 1 2 3 >
每页显示 20 50 100
Environmental Impact Assessment for an Absorption Heat Transformer
1
作者 Jorge Avelino Domínguez Patiño Antonio Rodríguez Martínez +2 位作者 Rosenberg Javier Romero Jonathan Ibarra-Bahena Martha Lilia Domínguez Patiño 《Open Journal of Applied Sciences》 2016年第7期409-415,共7页
This study presents the environmental impact assessment of an absorption heat transformer designed to recover 1 kW of thermal energy from each 2 kW of waste heat supplies. The net contribution of the heat transformer ... This study presents the environmental impact assessment of an absorption heat transformer designed to recover 1 kW of thermal energy from each 2 kW of waste heat supplies. The net contribution of the heat transformer is a load avoided of 0.665 kg CO2 equivalents;the recovery process avoids 0.729 kg CO2 equivalents and the major contribution to the environment impacts is the pumping process with 0.0437 kg CO2 equivalents for each 1 kWh recovered. The study results show that absorption heat transformer is a good environmental option because it produces useful energy from waste heat and the final result is an environmental impact diminution. 展开更多
关键词 Environmental Impact Life Cycle Assessment LCA absorption heat Transformer Waste heat Recovery
下载PDF
Lean and interpretable digital twins for building energy monitoring - A case study with smart thermostatic radiator valves and gas absorption heat pumps
2
作者 Massimiliano Manfren Patrick AB James +1 位作者 Victoria Aragon Lamberto Tronchin 《Energy and AI》 2023年第4期645-659,共15页
The transition to low carbon energy systems poses challenges in terms of energy efficiency.In building refur-bishment projects,efficient technologies such as smart controls and heat pumps are increasingly being used a... The transition to low carbon energy systems poses challenges in terms of energy efficiency.In building refur-bishment projects,efficient technologies such as smart controls and heat pumps are increasingly being used as a substitute for conventional technologies with the aim of reducing carbon emissions and determining operational energy and cost savings,together with other benefits.Measured building performance,however,often reveals a significant gap between the predicted energy use(design stage)and actual energy use(operation stage).For this reason,lean and interpretable digital twins are needed for building energy monitoring aimed at persistence of savings and continuous performance improvement.In this research,interpretable regression models are built with data at multiple temporal resolutions(monthly,daily and hourly)and seamlessly integrated with the goal of verifying the performance improvements due to Smart thermostatic radiator valves(TRVs)and gas absorption heat pumps(GAHPs)as well as giving insights on the performance of the building as a whole.Further,as part of modelling research,time of week and temperature(TOWT)approach is reformulated and benchmarked against its original implementation.The case study chosen is Hale Court sheltered housing,located in the city of Portsmouth(UK).This building has been used for the field-testing of innovative technologies such as TRVs and GAHPs within the EU Horizon 2020 project THERMOSS.The results obtained are used to illustrate possible extensions of the use of energy signature modelling,highlighting implications for energy management and innovative building technologies development. 展开更多
关键词 Data-driven methods Digital twins Energy signature Thermostatic radiator valves Gas absorption heat pumps Energy management Energy Analytics
原文传递
Mathematical model of absorption and hybrid heat pump 被引量:1
3
作者 Grazia Leonzio 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第10期1492-1504,共13页
Recovering waste heat from industrial processes is bene ficial in order to reduce the primary energy demands and heat pumps can be used to this purpose.Absorption heat pumps are energy-saving and environment-friendly ... Recovering waste heat from industrial processes is bene ficial in order to reduce the primary energy demands and heat pumps can be used to this purpose.Absorption heat pumps are energy-saving and environment-friendly because use working fluids that do not cause ozone depletion and can reduce the global warming emissions.The hybrid heat pump processes combine the conventional vapor-compression and the absorption heat pump cycles.Studies about the simulations and modeling of hybrid heat pumps are few in literature.In this research a mathematical model for single effect absorption and hybrid heat pump is carried out with Chem Cad? 6.0.1.LiBr–H_2O is used as working fluid while electrolytic NRTL and electrolytes latent heat are used as thermodynamic model due to the better results.Binary parameters of activity coef ficients are regressed from experimental vapor pressure data while default constants are used for the solubility expressions.A design of heat pumps is developed and a new modeling of generator is analyzed.The coef ficient of performance of absorption heat pump and hybrid heat pump is equal to 0.7 and 0.83 respectively.For absorption heat pump a sensitivity analysis is carried out to evaluate the effect of temperature and pressure generator,the concentration of Li–Br solution on coef ficient of performance,cooling capacity and working fluid temperature.For hybrid heat pump,the different coef ficients of performance,the primary energy ratio,the generator heat,and the compressor power are analyzed for different values of compressor proportion.Results show that comparing the two systems the hybrid pump allows to save more primary energy,costs and carbon dioxide emissions with respect to absorption heat pump with the increasing of compressor proportion parameter.Future researches should focus on the construction of this heat pumps integrated in chemical processes as a biogas plant or trigeneration systems. 展开更多
关键词 absorption heat pumps Hybrid heat pumps LiBr–H2O modeling Energy efficiency Process simulation Mathematical model
下载PDF
Heat and mass transfer through spiral tubes in absorber of absorption heat pump system for waste heat recovery
4
作者 Yoshinori Itaya Masatoshi Yamada +1 位作者 Kenji Marumo Nobusuke Kobayashi 《Propulsion and Power Research》 SCIE 2017年第2期140-146,共7页
Heat and mass transfer of a LiBr/water absorption heat pump system(AHP)was experimentally studied during working a heating-up mode.The examination was performed for a single spiral tube,which was simulated for heat tr... Heat and mass transfer of a LiBr/water absorption heat pump system(AHP)was experimentally studied during working a heating-up mode.The examination was performed for a single spiral tube,which was simulated for heat transfer tubes in an absorber.The inside and outside of the tube were subjected to a film flow of the absorption liquid and exposed to the atmosphere,respectively.The maximum temperature of the absorption liquid was observed not at the entrance but in the region a little downward from the entrance in the tube.The steam absorption convective heat transfer coefficient between the liquid film flowing down and the inside wall of the temperature and the film temperature at the maximum temperature location and the bottom.The film heat and mass transfer coefficients rose with increasing Reynolds number of the liquid film stream.The coefficients showed opposite trend to the empirical correlation reported for laminar film flow on a straight smooth tube in a refrigeration mode in the past work.The fact can be caused due to a turbulent promotion effect of the liquid in a spiral tube. 展开更多
关键词 absorption heat pump A single spiral tube heat and mass transfer Lithium bromide/water Film heat transfer coefficient Mass transfer coefficient Waste heat recovery
原文传递
Heat Absorption and Joule Heating Effects on Transient Free Convective Reactive Micropolar Fluid Flow Past a Vertical Porous Plate 被引量:3
5
作者 MD.Shamshuddin C.Balarama Krishna 《Fluid Dynamics & Materials Processing》 EI 2019年第3期207-231,共25页
Mathematical model for an unsteady,incompressible,electrically conducting micropolar fluid past a vertical plate through porous medium with constant plate velocity has been investigated in the present study.Heat absor... Mathematical model for an unsteady,incompressible,electrically conducting micropolar fluid past a vertical plate through porous medium with constant plate velocity has been investigated in the present study.Heat absorption,Joulian dissipation,and first-order chemical reaction is also considered.Under the assumption of low Reynolds number,the governing transport equations are rendered into non-dimensional form and the transformed first order differential equations are solved by employing an efficient finite element method.Influence of various flow parameters on linear velocity,microrotation velocity,temperature,and concentration are presented graphically.The effects of heat absorption and chemical reaction rate decelerate the flow is particularly near the wall.Skin friction and wall couple stress increases as heat absorption increases but the reverse phenomenon is observed in the case of chemical reaction rate.Wall mass transfer rate increases for chemical reaction and Sherwood number increases for heat absorption.Finite element study is very versatile in simulating unsteady micropolar rheo-materials processing transport phenomena.However,a relatively simple reaction effects restricted to first order. 展开更多
关键词 heat absorption joule heating chemical reaction micropolar fluid finite element method
下载PDF
Heat absorption control equation and its application of cool-wall cooling system in mines 被引量:2
6
作者 CHANG Zhang-yu JI Jing-wei +2 位作者 WANG Ke-yi NI Lu LI Ning-ning 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第9期2735-2751,共17页
In order to solve the heat damages in deep mines, a cool-wall cooling technology and its working model are proposed based on the principles of heat absorption and insulation in this paper. During this process, the dif... In order to solve the heat damages in deep mines, a cool-wall cooling technology and its working model are proposed based on the principles of heat absorption and insulation in this paper. During this process, the differential equation of thermal equilibrium for roadway control unit is built, and the heat adsorption control equation of cool-wall cooling system is derived by an integral method, so as to obtain the quantitative relationship among the heat absorption capacity of cooling system, the heat dissipating capacity of surrounding rock and air temperature change. Then, the heat absorption capacity required by air temperature less than the standard value for safety is figured out by section iterative method with the simultaneous solution of heat absorption control equation and the heat dissipation density equation of surrounding rock. Finally, the results show that as the air temperature at the inlet of roadway is 25 ℃, the roadway wall is covered by heat-absorbing plate up to 39% of the area, as well as the cold water is injected into the heat-absorbing plate with a temperature of 20 ℃ and a mass flow of 113.6 kg/s, the air flow temperature rise per kilometer in the roadway can be less than 3 ℃. 展开更多
关键词 cold-wall cooling system heat absorption control equation heat dissipation boundary conditions safe thermal environment system design
下载PDF
Melting heat transfer effects on stagnation point flow of micropolar fluid saturated in porous medium with internal heat generation(absorption) 被引量:3
7
作者 M.A.A.MAHMOUD S.E.WAHEED 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第8期979-992,共14页
The effect of melting heat transfer on the two dimensional boundary layer flow of a micropolar fluid near a stagnation point embedded in a porous medium in the presence of internal heat generation/absorption is invest... The effect of melting heat transfer on the two dimensional boundary layer flow of a micropolar fluid near a stagnation point embedded in a porous medium in the presence of internal heat generation/absorption is investigated. The governing non-linear partial differential equations describing the problem are reduced to a system of non-linear ordinary differential equations using similarity transformations solved numerically using the Chebyshev spectral method. Numerical results for velocity, angular velocity and temperature profiles are shown graphically and discussed for different values of the inverse Darcy number, the heat generation/absorption parameter, and the melting parameter. The effects of the pertinent parameters on the local skin-friction coefficient, the wall couple stress, and the local Nusselt number are tabulated and discussed. The results show that the inverse Darcy number has the effect of enhancing both velocity and temperature and suppressing angular velocity. It is also found that the local skin-friction coefficient decreases, while the local Nusselt number increases as the melting parameter increases. 展开更多
关键词 melting effect stagnation point micropolar fluid porous medium heat generation absorption
下载PDF
Computational Analysis of the Effect of Nano Particle Material Motion on Mixed Convection Flow in the Presence of Heat Generation and Absorption 被引量:2
8
作者 Muhammad Ashraf Amir Abbas +3 位作者 Saqib Zia Yu-Ming Chu Ilyas Khan Kottakkaran Sooppy Nisar 《Computers, Materials & Continua》 SCIE EI 2020年第11期1809-1823,共15页
The present study is concerned with the physical behavior of the combined effect of nano particle material motion and heat generation/absorption due to the effect of different parameters involved in prescribed flow mo... The present study is concerned with the physical behavior of the combined effect of nano particle material motion and heat generation/absorption due to the effect of different parameters involved in prescribed flow model.The formulation of the flow model is based on basic universal equations of conservation of momentum,energy and mass.The prescribed flow model is converted to non-dimensional form by using suitable scaling.The obtained transformed equations are solved numerically by using finite difference scheme.For the analysis of above said behavior the computed numerical data for fluid velocity,temperature profile,and mass concentration for several constraints that is mixed convection parameterλt,modified mixed convection parameterλc,Prandtl number Pr,heat generation/absorption parameterδ,Schmidt number Sc,thermophoresis parameter Nt,and thermophoretic coefficient k are sketched in graphical form.Numerical results for skin friction,heat transfer rate and the mass transfer rate are tabulated for various emerging physical parameters.It is reported that in enhancement in heat,generation boosts up the fluid temperature at some positions of the surface of the sphere.As heat absorption parameter is decreased temperature field increases at position X=π/4 on the other hand,no alteration at other considered circumferential positions is noticed. 展开更多
关键词 Nano material mixed convection finite difference method heat generation/absorption SPHERES
下载PDF
Lattice Boltzmann method formulation for simulation of thermal radiation effects on non-Newtonian Al_(2)O_(3) free convection in entropy determination
9
作者 M.NEMATI M.SEFID +1 位作者 A.KARIMIPOUR A.J.CHAMKHA 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第6期1085-1106,共22页
The simultaneous investigation on the parameters affecting the flow of electrically conductive fluids such as volumetric radiation,heat absorption,heat generation,and magnetic field(MF)is very vital due to its existen... The simultaneous investigation on the parameters affecting the flow of electrically conductive fluids such as volumetric radiation,heat absorption,heat generation,and magnetic field(MF)is very vital due to its existence in various sectors of industry and engineering.The present research focuses on mathematical modeling to simulate the cooling of a hot component through power-law(PL)nanofluid convection flow.The temperature reduction of the hot component inside a two-dimensional(2D)inclined chamber with two different cold wall shapes is evaluated.The formulation of the problem is derived with the lattice Boltzmann method(LBM)by code writing via the FORTRAN language.The variables such as the radiation parameter(0–1),the Hartmann number(0–75),the heat absorption/generation coefficient(−5–5),the fluid behavioral index(0.8–1.2),the Rayleigh number(103–105),the imposed MF angle(0°–90°),the chamber inclination angle(−90°–90°),and the cavity cold wall shape(smooth and curved)are investigated.The findings indicate that the presence of radiation increases the mean Nusselt number value for the shear-thickening,Newtonian,and shear thinning fluids by about 6.2%,4%,and 2%,respectively.In most cases,the presence of nanoparticles improves the heat transfer(HT)rate,especially in the cases where thermal conduction dominates convection.There is the lowest cooling performance index and MF effect for the cavity placed at an angle of 90°.The application in the design of electronic coolers and solar collectors is one of the practical cases of this numerical research. 展开更多
关键词 thermal performance analysis heat absorption/generation power-law(PL)Al_(2)O_(3)nanofluid magnetohydrodynamics natural convection volumetric radiation inclined cavity
下载PDF
Heat transfer and nanofluid flow over a porous plate with radiation and slip boundary conditions 被引量:5
10
作者 Hamid MALEKI Jalal ALSARRAF +2 位作者 Abbas MOGHANIZADEH Hassan HAJABDOLLAHI Mohammad Reza SAFAEI 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第5期1099-1115,共17页
Presence of different terms with various values can alter the thermal behavior of the nanofluids flow over porous surfaces.The aim of this research is to study the influence of nanoparticles volume fraction,nanopartic... Presence of different terms with various values can alter the thermal behavior of the nanofluids flow over porous surfaces.The aim of this research is to study the influence of nanoparticles volume fraction,nanoparticles type,suction or injection,the heat generation or absorption,the Eckert number,thermal and velocity slip parameters,and radiation on the velocity and temperature fields on the flow and heat transfer over a porous flat plate.Four different types of nanoparticles including metal nanoparticles (Cu),metal oxide nanoparticles (Al2O3) and carbon-based nanomaterials (MWCNTs and SWCNTs) which were dispersed in the water (as based fluid) are studied.The governing equations are converted into the ordinary differential equations using similarity solution and solved numerically by the RKF45 algorithm.The results of the simulations showed a contradiction with the results of other researchers who expressed that using nanoparticles with higher thermal conductivity and volume fraction led to increasing heat transfer rate in nanofluids;this study proves that,in some cases,boosting the volume fraction of nanoparticles has a potential to decrease the heat transfer rate due to significant changes in values of some parameters including radiation,heat generation,and viscous dissipation. 展开更多
关键词 RADIATION slip condition porous surface heat generation/absorption viscous dissipation NANOFLUID
下载PDF
MHD Maxwell Fluid with Heat Transfer Analysis under Ramp Velocity and Ramp Temperature Subject to Non-Integer Differentiable Operators 被引量:3
11
作者 Thabet Abdeljawad Muhammad Bilal Riaz +1 位作者 Syed Tauseef Saeed Nazish Iftikhar 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第2期821-841,共21页
The main focus of this study is to investigate the impact of heat generation/absorption with ramp velocity and ramp temperature on magnetohydrodynamic(MHD)time-dependent Maxwell fluid over an unbounded plate embedded ... The main focus of this study is to investigate the impact of heat generation/absorption with ramp velocity and ramp temperature on magnetohydrodynamic(MHD)time-dependent Maxwell fluid over an unbounded plate embedded in a permeable medium.Non-dimensional parameters along with Laplace transformation and inversion algorithms are used to find the solution of shear stress,energy,and velocity profile.Recently,new fractional differential operators are used to define ramped temperature and ramped velocity.The obtained analytical solutions are plotted for different values of emerging parameters.Fractional time derivatives are used to analyze the impact of fractional parameters(memory effect)on the dynamics of the fluid.While making a comparison,it is observed that the fractional-order model is best to explain the memory effect as compared to classical models.Our results suggest that the velocity profile decrease by increasing the effective Prandtl number.The existence of an effective Prandtl number may reflect the control of the thickness of momentum and enlargement of thermal conductivity.The incremental value of the M is observed for a decrease in the velocity field,which reflects to control resistive force.Further,it is noted that the Atangana-Baleanu derivative in Caputo sense(ABC)is the best to highlight the dynamics of the fluid.The influence of pertinent parameters is analyzed graphically for velocity and energy profile.Expressions for skin friction and Nusselt number are also derived for fractional differential operators. 展开更多
关键词 MHD Maxwell fluid fractional differential operator heat generation absorption thermal effect non-singular kernels
下载PDF
DFT Study on Thermodynamic Parameters of CO2 Absorption into Aqueous Solution of Aliphatic Amines 被引量:1
12
作者 Monireh Hajmalek Hossein Aghaie +1 位作者 Karim Zare Mehran Aghaie 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2014年第6期672-678,I0003,共8页
Using density functional theory (DFT), the thermodynamic parameters of the CO2 absorp-tion into the aqueous solution of the aliphatic amines including some alkylamines, alka-nolamines, diamines and a type of aminoam... Using density functional theory (DFT), the thermodynamic parameters of the CO2 absorp-tion into the aqueous solution of the aliphatic amines including some alkylamines, alka-nolamines, diamines and a type of aminoamide were calculated. The geometry optimiza-tion and the calculation of vibrational frequencies in the gas phase were performed at the B3LYP/6-311+ G(d,p) level of theory. Moreover, the standard solvation free energies of the studied species were computed upon the solution phase optimized geometries through the latest continuum solvation model (SMD/IEF-PCM) at the HF/6-31G(d) level of theory. With this approach, two important properties of the CO2 absorption into the aqueous so-lutions of the studied amines were evaluated: the acid dissociation constant (pKa) of the parent amines and the standard enthalpy change (ΔH^φabs) related to the CO2 absorption process. A roughly linear relationship was observed between pKa and ΔH^φabs. This finding suggests that a raise in the basicity of an amine leads to an increase in the heat released in CO2 absorption and consequently in the required energy for the regeneration of amine. 展开更多
关键词 Density functional theory AMINE CO2 absorption heat of absorption SMD solvation model
下载PDF
Mechanical Properties and Microstructure of Al_(2)O_(3)/SiC Composite Ceramics for Solar Heat Absorber 被引量:1
13
作者 WU Jianfeng ZHOU Yang +3 位作者 SUN Mengke XU Xiaohong TIAN Kezhong YU Jiaqi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2021年第5期615-623,共9页
Al_(2)O_(3)/SiC composite ceramics were prepared fromα-Al_(2)O_(3) and SiC by a pressureless sinter method in this study.The effect of SiC contents on the mechanic properties,phase compositions and microstructure is ... Al_(2)O_(3)/SiC composite ceramics were prepared fromα-Al_(2)O_(3) and SiC by a pressureless sinter method in this study.The effect of SiC contents on the mechanic properties,phase compositions and microstructure is studied.Experimental results show that the vickers hardness,wear resistance and thermal conductivity of the samples increase with the increase in the SiC content,and the hardness of the sample reaches 16.22 GPa,and thermal conductivity of the sample reaches 25.41 W/(m.K)at room temperature when the SiC content is 20 wt%(B5)and the sintering temperature is at 1640℃.Higher hardness means higher scour resistance,and it indicates that the B5 material is expected to be used for the solar heat absorber of third generation solar thermal generation.The results indicate the mechanism of improving mechanical properties of Al_(2)O_(3)/SiC composite ceramics:SiC plays a role in grain refinement that the grain of SiC inhibits the grain growth of Al_(2)O_(3),while the addition of SiC changes the fracture mode from the intergranular to the intergranular-transgranular. 展开更多
关键词 Al_(2)O_(3)/SiC composite ceramics HARDNESS thermal conductivity solar heat absorption material
下载PDF
Convective heat and mass transfer effects in three-dimensional flow of Maxwell fluid over a stretching surface with heat source 被引量:1
14
作者 T.Hayat M.Bilal Ashraf +1 位作者 A.Alsaedi S.A.Shehzad 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期717-726,共10页
Heat and mass transfer effects in three-dimensional flow of Maxwell fluid over a stretching surface were addressed.Analysis was performed in the presence of internal heat generation/absorption. Concentration and therm... Heat and mass transfer effects in three-dimensional flow of Maxwell fluid over a stretching surface were addressed.Analysis was performed in the presence of internal heat generation/absorption. Concentration and thermal buoyancy effects were accounted. Convective boundary conditions for heat and mass transfer analysis were explored. Series solutions of the resulting problem were developed. Effects of mixed convection, internal heat generation/absorption parameter and Biot numbers on the dimensionless velocity, temperature and concentration distributions were illustrated graphically. Numerical values of local Nusselt and Sherwood numbers were obtained and analyzed for all the physical parameters. It is found that both thermal and concentration boundary layer thicknesses are decreasing functions of stretching ratio. Variations of mixed convection parameter and concentration buoyancy parameter on the velocity profiles and associated boundary layer thicknesses are enhanced. Velocity profiles and temperature increase in the case of internal heat generation while they reduce for heat absorption. Heat transfer Biot number increases the thermal boundary layer thickness and temperature. Also concentration and its associated boundary layer are enhanced with an increase in mass transfer Biot number. The local Nusselt and Sherwood numbers have quite similar behaviors for increasing values of mixed convection parameter, concentration buoyancy parameter and Deborah number. 展开更多
关键词 Maxwell fluid mixed convection convective conditions three-dimensional flow internal heat generation/absorption
下载PDF
Thermal Diffusion Effect on MHD Heat and Mass Transfer Flow past a Semi Infinite Moving Vertical Porous Plate with Heat Generation and Chemical Reaction 被引量:1
15
作者 Gurivireddy P. Raju M. C. +1 位作者 Mamatha B. Varma S. V. K. 《Applied Mathematics》 2016年第7期638-649,共12页
The objective of present work is to study the thermo diffusion effect on an unsteady simultaneous convective heat and mass transfer flow of an incompressible, electrically conducting, heat generating/absorbing fluid a... The objective of present work is to study the thermo diffusion effect on an unsteady simultaneous convective heat and mass transfer flow of an incompressible, electrically conducting, heat generating/absorbing fluid along a semi-infinite moving porous plate embedded in a porous medium with the presence of pressure gradient, thermal radiation field and chemical reaction. It is assumed that the permeable plate is embedded in a uniform porous medium and moves with a constant velocity in the flow direction in the presence of a transverse magnetic field. It is also assumed that the free stream consists of a mean velocity, temperature and concentration over which are super imposed an exponentially varying with time. The equations of continuity, momentum, energy and diffusion, which govern the flow field, are solved by using a regular perturbation method. The behavior of the velocity, temperature, concentration, Skin-friction, rate of heat transfer and rate of mass transfer has been discussed for variations in the physical parameters. An increase in both Pr and R results a decrease in thermal boundary layer thickness. However, concentration decreases as Kr, Sc increase but it increases with an increase in both So and δ. 展开更多
关键词 heat Generation/absorption Chemical Reaction MHD Thermal Radiation Thermal Diffusion heat and Mass Transfer Semi-Infinite Vertical Plate
下载PDF
One-Dimensional-Unsteady Thermal Stress in Heat-Ray Absorbing Sheet Glass:Influence of a Sudden Weather Change
16
作者 Tomohiko Hachiya Yoshihiro Obata 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第2期147-151,共5页
Heat-ray absorbing sheet glass can decrease electric energy used for air-conditioning by controling the incoming heat-ray through windows into the rooms.On the other hand,the glasses increase the temperature and somet... Heat-ray absorbing sheet glass can decrease electric energy used for air-conditioning by controling the incoming heat-ray through windows into the rooms.On the other hand,the glasses increase the temperature and sometimes yield heat cracks by thermal stresses.It is important to know the state of thermal stress accurately in order to develop heat-ray absorbing sheet glasses with higher performance and without heat cracks.A conventional design manual at field site treats the steady state and the thermal boundary condition that all heat-rays are absorbed at glass surface.In this paper,it is assumed that the heat-ray is absorbed over all the plate thickness.The idea of the local absorptibity per unit length is introduced.The modeling of internal heat absorbing process is proposed.It can explain well that the total absorptivity depends on the plate thickness.The temperature and the thermal stresses are calculated and discussed.Sudden weather changes such as rain and/or wind after the glass is heated to be steady state are also discussed.Those weather changes are treated with the change of amount of absorbed heat-ray and/or the change of heat transfer coefficient between the glass surface and the outside atmosphere. 展开更多
关键词 thermal stress sheet glassl heat-ray absorptivity heat crack
下载PDF
Melting heat and thermal radiation effects in stretched flow of an Oldroyd-B fluid
17
作者 T.HAYAT A.KIRAN +1 位作者 M.IMTIAZ A.ALSAEDI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第7期957-968,共12页
The incompressible flow of a non-Newtonian fluid with mixed convection along a stretching sheet is analyzed. The heat transfer phenomenon is discussed through thermal radiation. The effects of the melting heat transfe... The incompressible flow of a non-Newtonian fluid with mixed convection along a stretching sheet is analyzed. The heat transfer phenomenon is discussed through thermal radiation. The effects of the melting heat transfer and heat generation/absorption are also taken. Suitable transformations are utilized to attain the nonlinear ordinary differential expressions. The convergent series solutions are presented. The fluid flow, temperature, and surface heat transfer rate are examined graphically. It is observed that the velocity decreases when the relaxation time increases while increases when the retardation time is constant. The results also reveal that the temperature distribution reduces when the radiation parameter increases. 展开更多
关键词 magnetohydrodynamic (MHD) Oldroyd-B fluid mixed convection meltingheat transfer thermal radiation heat generation/absorption
下载PDF
Entropy generation approach with heat and mass transfer in magnetohydrodynamic stagnation point flow of a tangent hyperbolic nanofluid
18
作者 Tiehong ZHAO M.R.KHAN +3 位作者 Yuming CHU A.ISSAKHOV R.ALI S.KHAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第8期1205-1218,共14页
This work examines the entropy generation with heat and mass transfer in magnetohydrodynamic(MHD)stagnation point flow across a stretchable surface.The heat transport process is investigated with respect to the viscou... This work examines the entropy generation with heat and mass transfer in magnetohydrodynamic(MHD)stagnation point flow across a stretchable surface.The heat transport process is investigated with respect to the viscous dissipation and thermal radiation,whereas the mass transport is observed under the influence of a chemical reaction.The irreversibe factor is measured through the application of the second law of thermodynamics.The established non-linear partial differential equations(PDEs)have been replaced by acceptable ordinary differential equations(ODEs),which are solved numerically via the bvp4 c method(built-in package in MATLAB).The numerical analysis of the resulting ODEs is carried out on the different flow parameters,and their effects on the rate of heat transport,friction drag,concentration,and the entropy generation are considered.It is determined that the concentration estimation and the Sherwood number reduce and enhance for higher values of the chemical reaction parameter and the Schmidt number,although the rate of heat transport is increased for the Eckert number and heat generation/absorption parameter,respectively.The entropy generation augments with boosting values of the Brinkman number,and decays with escalating values of both the radiation parameter and the Weissenberg number. 展开更多
关键词 tangent hyperbolic fluid magnetohydrodynamic(MHD) viscous dissipation stagnation point flow heat generation/absorption thermal radiation
下载PDF
Melting and floating processes of inorganic materials in molten steel:Visualization physical simulation and mathematical modelling
19
作者 Jin-hu Lai Sheng Yu +4 位作者 Yang-jian Xu Dan-qing Jiang San-san Shuai Jiang Wang Zhong-ming Ren 《China Foundry》 SCIE CAS CSCD 2023年第2期89-98,共10页
It has been demonstrated that heat absorption method by using the inorganic material rod to cool the molten steel can significantly reduce the macrosegregation level of the large steel ingot.However,owing to the opaci... It has been demonstrated that heat absorption method by using the inorganic material rod to cool the molten steel can significantly reduce the macrosegregation level of the large steel ingot.However,owing to the opacity of the molten steel,the physical mechanism of the heat absorption method is not clear.In this work,a transparent hydraulic physical model with water and paraffin wax was built to simulate the melting and floating processes of inorganic materials in the molten steel.A mathematical simulation was also carried out to analyze the connection between the actual ingot and the physical model.Results show that it is feasible to simulate the molten steel and inorganic materials with water and paraffin wax.With the help of the physical model,the process of the melting of paraffin wax and its floating to the surface of water were clearly observed,during which the temperature of water at some characteristic positions in the mold was recorded.The visualization findings demonstrate that the melting and floating processes of paraffin wax can help to bring the heat from the center of the mold to the top surface more quickly,which reduces the superheat and significantly accelerates the cooling rate of water.The experimental results show that for the water with a certain superheat,the use of a larger mass of paraffin wax can accelerate the cooling of the water,but there is a risk of incomplete melting of the paraffin wax.A higher superheat of water will lead to a quicker melting rate for a given mass of paraffin wax,while a lower superheat leads to the incomplete melting of paraffin wax as well. 展开更多
关键词 water and paraffin wax heat absorption method physical simulation SUPERheat large steel ingot
下载PDF
High-temperature acoustic properties of porous titanium fiber metal materials 被引量:1
20
作者 刘世锋 李安 +1 位作者 张朝晖 李东峰 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1762-1766,共5页
The high-temperature acoustic absorption performance of porous titanium fiber material was investigated in terms of sample thickness, porosity, temperature, air-cavity thickness and double-layer structure arrangement.... The high-temperature acoustic absorption performance of porous titanium fiber material was investigated in terms of sample thickness, porosity, temperature, air-cavity thickness and double-layer structure arrangement. The effects on absorption coefficient were systematically assessed. The results show that the sound absorption performance is improved by increasing the sample porosity and/or thickness, and/or increasing the air-cavity thickness. Meanwhile, increasing the temperature gives better acoustic absorption performance in the low frequency range but also lowers the performance in the high frequency range, while double-layer structure enables better acoustic absorption performance. 展开更多
关键词 porous titanium fiber material acoustic absorption heat transfer pool boiling
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部