Surface plasmon resonance of noble metal nanoparticles leads to the optical absorption enhancement effects,which have great potential applications in solar cell.By using the general numerical method of discrete dipole...Surface plasmon resonance of noble metal nanoparticles leads to the optical absorption enhancement effects,which have great potential applications in solar cell.By using the general numerical method of discrete dipole approximation (DDA),we study the absorption and scattering properties of two-dimensional square silver nanodisks (2D SSN) arrays on the single crystal silicon solar cell.Based on the effective reflective index model of the single crystal silicon solar cell,we investigate the optical enhancement absorption of light energy by varying the light incident direction,particle size,aspect ratio,and interparticle spacing of the silver nanodisks.The peak values and position of the optical extinction spectra of the 2D square arrays of noble metal nanodisks are obtained with the different array structures.展开更多
Recovering waste heat from industrial processes is bene ficial in order to reduce the primary energy demands and heat pumps can be used to this purpose.Absorption heat pumps are energy-saving and environment-friendly ...Recovering waste heat from industrial processes is bene ficial in order to reduce the primary energy demands and heat pumps can be used to this purpose.Absorption heat pumps are energy-saving and environment-friendly because use working fluids that do not cause ozone depletion and can reduce the global warming emissions.The hybrid heat pump processes combine the conventional vapor-compression and the absorption heat pump cycles.Studies about the simulations and modeling of hybrid heat pumps are few in literature.In this research a mathematical model for single effect absorption and hybrid heat pump is carried out with Chem Cad? 6.0.1.LiBr–H_2O is used as working fluid while electrolytic NRTL and electrolytes latent heat are used as thermodynamic model due to the better results.Binary parameters of activity coef ficients are regressed from experimental vapor pressure data while default constants are used for the solubility expressions.A design of heat pumps is developed and a new modeling of generator is analyzed.The coef ficient of performance of absorption heat pump and hybrid heat pump is equal to 0.7 and 0.83 respectively.For absorption heat pump a sensitivity analysis is carried out to evaluate the effect of temperature and pressure generator,the concentration of Li–Br solution on coef ficient of performance,cooling capacity and working fluid temperature.For hybrid heat pump,the different coef ficients of performance,the primary energy ratio,the generator heat,and the compressor power are analyzed for different values of compressor proportion.Results show that comparing the two systems the hybrid pump allows to save more primary energy,costs and carbon dioxide emissions with respect to absorption heat pump with the increasing of compressor proportion parameter.Future researches should focus on the construction of this heat pumps integrated in chemical processes as a biogas plant or trigeneration systems.展开更多
The optical parameters for three samples of intrinsic, doped Si and doped Mg (Al x Ga 1- x ) y In 1- y P prepared by the MOCVD on GaAs substrate were measured by using ellipsometry and were calc...The optical parameters for three samples of intrinsic, doped Si and doped Mg (Al x Ga 1- x ) y In 1- y P prepared by the MOCVD on GaAs substrate were measured by using ellipsometry and were calculated by the two-layer absorption film model. The results obtained were discussed. The grown rates and thickness of oxidic layer on the intrinsic (Al x Ga 1- x ) y In 1- y P surface exposed in the atmosphere were studied. A linear dependence of oxidic layer thickness on the time was obtained.展开更多
In this note we present the Adomian decomposition method for solving a simple model for the diffusion and absorption of oxygen in tissue. The method is examined for computational efficiency and accuracy.
Optical absorption in thin-film solar cells can be improved by using surface plasmons for guiding and confining the light on the nanoscale.We report theoretical and simulation studies of a-Si thin-film solar cells wit...Optical absorption in thin-film solar cells can be improved by using surface plasmons for guiding and confining the light on the nanoscale.We report theoretical and simulation studies of a-Si thin-film solar cells with silver nanocylinders on the surface.We found that surface plasmons increased the cells' spectral response over almost the entire studied solar spectrum.In the ultraviolet range and at wavelengths close to the Si band gap we observed a significant enhancement of the absorption for both thin-film and wafer-based structures.We also performed optimization studies of particle size,inter-particle distance,and dielectric environment,for obtaining maximal absorption within the substrate.A blue-shift of the resonance wavelength with increasing inter-particle distance was observed in the visible range.Cell performance improved at optimal spacing,which strongly depended on the nanoparticle size.Increasing the nanocylinder size was accompanied by the widening of the plasmon resonance band and a red-shift of the plasmon resonance peaks.A weak red-shift and plasmon peak enhancement were observed in the reflectance curve with increasing refractive index of the dielectric spacer.展开更多
基金supported by the National Natural Science Foundation of China under Grant No. G050104011004024the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. A0901040110018512026
文摘Surface plasmon resonance of noble metal nanoparticles leads to the optical absorption enhancement effects,which have great potential applications in solar cell.By using the general numerical method of discrete dipole approximation (DDA),we study the absorption and scattering properties of two-dimensional square silver nanodisks (2D SSN) arrays on the single crystal silicon solar cell.Based on the effective reflective index model of the single crystal silicon solar cell,we investigate the optical enhancement absorption of light energy by varying the light incident direction,particle size,aspect ratio,and interparticle spacing of the silver nanodisks.The peak values and position of the optical extinction spectra of the 2D square arrays of noble metal nanodisks are obtained with the different array structures.
文摘Recovering waste heat from industrial processes is bene ficial in order to reduce the primary energy demands and heat pumps can be used to this purpose.Absorption heat pumps are energy-saving and environment-friendly because use working fluids that do not cause ozone depletion and can reduce the global warming emissions.The hybrid heat pump processes combine the conventional vapor-compression and the absorption heat pump cycles.Studies about the simulations and modeling of hybrid heat pumps are few in literature.In this research a mathematical model for single effect absorption and hybrid heat pump is carried out with Chem Cad? 6.0.1.LiBr–H_2O is used as working fluid while electrolytic NRTL and electrolytes latent heat are used as thermodynamic model due to the better results.Binary parameters of activity coef ficients are regressed from experimental vapor pressure data while default constants are used for the solubility expressions.A design of heat pumps is developed and a new modeling of generator is analyzed.The coef ficient of performance of absorption heat pump and hybrid heat pump is equal to 0.7 and 0.83 respectively.For absorption heat pump a sensitivity analysis is carried out to evaluate the effect of temperature and pressure generator,the concentration of Li–Br solution on coef ficient of performance,cooling capacity and working fluid temperature.For hybrid heat pump,the different coef ficients of performance,the primary energy ratio,the generator heat,and the compressor power are analyzed for different values of compressor proportion.Results show that comparing the two systems the hybrid pump allows to save more primary energy,costs and carbon dioxide emissions with respect to absorption heat pump with the increasing of compressor proportion parameter.Future researches should focus on the construction of this heat pumps integrated in chemical processes as a biogas plant or trigeneration systems.
文摘The optical parameters for three samples of intrinsic, doped Si and doped Mg (Al x Ga 1- x ) y In 1- y P prepared by the MOCVD on GaAs substrate were measured by using ellipsometry and were calculated by the two-layer absorption film model. The results obtained were discussed. The grown rates and thickness of oxidic layer on the intrinsic (Al x Ga 1- x ) y In 1- y P surface exposed in the atmosphere were studied. A linear dependence of oxidic layer thickness on the time was obtained.
文摘In this note we present the Adomian decomposition method for solving a simple model for the diffusion and absorption of oxygen in tissue. The method is examined for computational efficiency and accuracy.
文摘Optical absorption in thin-film solar cells can be improved by using surface plasmons for guiding and confining the light on the nanoscale.We report theoretical and simulation studies of a-Si thin-film solar cells with silver nanocylinders on the surface.We found that surface plasmons increased the cells' spectral response over almost the entire studied solar spectrum.In the ultraviolet range and at wavelengths close to the Si band gap we observed a significant enhancement of the absorption for both thin-film and wafer-based structures.We also performed optimization studies of particle size,inter-particle distance,and dielectric environment,for obtaining maximal absorption within the substrate.A blue-shift of the resonance wavelength with increasing inter-particle distance was observed in the visible range.Cell performance improved at optimal spacing,which strongly depended on the nanoparticle size.Increasing the nanocylinder size was accompanied by the widening of the plasmon resonance band and a red-shift of the plasmon resonance peaks.A weak red-shift and plasmon peak enhancement were observed in the reflectance curve with increasing refractive index of the dielectric spacer.