The nonlinear behaviors and vibration reduction of a linear system with a nonlinear energy sink(NES)are investigated.The linear system is excited by a harmonic and random base excitation,consisting of a mass block,a l...The nonlinear behaviors and vibration reduction of a linear system with a nonlinear energy sink(NES)are investigated.The linear system is excited by a harmonic and random base excitation,consisting of a mass block,a linear spring,and a linear viscous damper.The NES is composed of a mass block,a linear viscous damper,and a spring with ideal cubic nonlinear stiffness.Based on the generalized harmonic function method,the steady-state Fokker-Planck-Kolmogorov equation is presented to reveal the response of the system.The path integral method based on the Gauss-Legendre polynomial is used to achieve the numerical solutions.The performance of vibration reduction is evaluated by the displacement and velocity transition probability densities,the transmissibility transition probability density,and the percentage of the energy absorption transition probability density of the linear oscillator.The sensitivity of the parameters is analyzed for varying the nonlinear stiffness coefficient and the damper ratio.The investigation illustrates that a linear system with NES can also realize great vibration reduction under harmonic and random base excitations and random bifurcation may appear under different parameters,which will affect the stability of the system.展开更多
Synchronous condensers(SCs)are generally used at the receiving-end stations of ultra-high-voltage direct current(UHVDC)transmission systems due to their strong reactive power support and flexible regulation of reactiv...Synchronous condensers(SCs)are generally used at the receiving-end stations of ultra-high-voltage direct current(UHVDC)transmission systems due to their strong reactive power support and flexible regulation of reactive power according to the interconnected grids operating conditions.In this paper,different starting control schemes of a SC integrated power grid are investigated providing four main contributions:1)The principle of reactive power support of the SC on the interconnected power grid is analytically studied,providing the establishment of mathematical models.2)Four different starting control schemes are developed for the initialization and SC integration,i.e.in Scheme 1,a preset initial falling speed is directly utilized without initialization;in Scheme 2,a black start sequential control approach with a static frequency converter(SFC)is proposed;in Scheme 3,PI/PD/PID controllers are respectively applied for the excitation device at the speed-falling stage;in Scheme 4,a pre-insertion approach of an energy absorption component with R/L/RL is utilized to suppress the surges at the SC integration instant.3)The dynamic behaviors of four different starting schemes at specific operating stages are evaluated.4)The success rate of SC integration is analyzed to evaluate starting control performance.Performance of the SC interconnected system with four different starting control schemes is evaluated in the timedomain simulation environment PSCAD/EMTDC^(TM).The results prove the superiority of the proposed starting control approach in Scheme 4.展开更多
A new syntactic foam material was prepared by screening three different average particle sizes of cenospheres(150,200,and 300μm)from industrial waste fly ash.Axial impact testing on syntactic foam filler and foam-fil...A new syntactic foam material was prepared by screening three different average particle sizes of cenospheres(150,200,and 300μm)from industrial waste fly ash.Axial impact testing on syntactic foam filler and foam-filled tubes was conducted using a drop hammer test machine.The effects of parameters,such as the size of cenospheres and the impact velocity,on the mechanism of deformation,mechanical characteristics,and capacity for energy absorption of the specimen were investigated.On this basis,the differences in compressive properties exhibited by the syntactic foam-filled tubes under the two loading conditions were investigated.The results indicate that with the decrease in the average diameter of cenospheres,the initial peak crushing load and mean crushing load of foam-filled tubes increase,while the compression efficiency decreases.The specific energy absorption(SEA)of the syntactic foam-filled tube can reach 25 J/g.With the increase of impact velocity,the SEA of the specimen increases slightly.It was demonstrated that the syntactic foam-filled tube exhibits a higher effective energy absorption ratio under impact loading compared to quasi-static loading.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11772205 and11572182)the Liaoning Revitalization Talents Program of China(No.XLYC1807172)
文摘The nonlinear behaviors and vibration reduction of a linear system with a nonlinear energy sink(NES)are investigated.The linear system is excited by a harmonic and random base excitation,consisting of a mass block,a linear spring,and a linear viscous damper.The NES is composed of a mass block,a linear viscous damper,and a spring with ideal cubic nonlinear stiffness.Based on the generalized harmonic function method,the steady-state Fokker-Planck-Kolmogorov equation is presented to reveal the response of the system.The path integral method based on the Gauss-Legendre polynomial is used to achieve the numerical solutions.The performance of vibration reduction is evaluated by the displacement and velocity transition probability densities,the transmissibility transition probability density,and the percentage of the energy absorption transition probability density of the linear oscillator.The sensitivity of the parameters is analyzed for varying the nonlinear stiffness coefficient and the damper ratio.The investigation illustrates that a linear system with NES can also realize great vibration reduction under harmonic and random base excitations and random bifurcation may appear under different parameters,which will affect the stability of the system.
基金supported by the National Natural Science Foundation of China under Grant 51807091the Natural Science Foundation of Jiangsu Province BK20180478+2 种基金the China Postdoctoral Science Foundation under Grant 2019M661846the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources under Grant LAPS20016Engineering and Physical Sciences Research Council under Grant EP/N032888/1.
文摘Synchronous condensers(SCs)are generally used at the receiving-end stations of ultra-high-voltage direct current(UHVDC)transmission systems due to their strong reactive power support and flexible regulation of reactive power according to the interconnected grids operating conditions.In this paper,different starting control schemes of a SC integrated power grid are investigated providing four main contributions:1)The principle of reactive power support of the SC on the interconnected power grid is analytically studied,providing the establishment of mathematical models.2)Four different starting control schemes are developed for the initialization and SC integration,i.e.in Scheme 1,a preset initial falling speed is directly utilized without initialization;in Scheme 2,a black start sequential control approach with a static frequency converter(SFC)is proposed;in Scheme 3,PI/PD/PID controllers are respectively applied for the excitation device at the speed-falling stage;in Scheme 4,a pre-insertion approach of an energy absorption component with R/L/RL is utilized to suppress the surges at the SC integration instant.3)The dynamic behaviors of four different starting schemes at specific operating stages are evaluated.4)The success rate of SC integration is analyzed to evaluate starting control performance.Performance of the SC interconnected system with four different starting control schemes is evaluated in the timedomain simulation environment PSCAD/EMTDC^(TM).The results prove the superiority of the proposed starting control approach in Scheme 4.
基金the National Natural Science Foundation of China(Nos.51578201 and 51778196)the Heilongjiang Provincial Natural Science Foundation of China(No.LH2020E058).
文摘A new syntactic foam material was prepared by screening three different average particle sizes of cenospheres(150,200,and 300μm)from industrial waste fly ash.Axial impact testing on syntactic foam filler and foam-filled tubes was conducted using a drop hammer test machine.The effects of parameters,such as the size of cenospheres and the impact velocity,on the mechanism of deformation,mechanical characteristics,and capacity for energy absorption of the specimen were investigated.On this basis,the differences in compressive properties exhibited by the syntactic foam-filled tubes under the two loading conditions were investigated.The results indicate that with the decrease in the average diameter of cenospheres,the initial peak crushing load and mean crushing load of foam-filled tubes increase,while the compression efficiency decreases.The specific energy absorption(SEA)of the syntactic foam-filled tube can reach 25 J/g.With the increase of impact velocity,the SEA of the specimen increases slightly.It was demonstrated that the syntactic foam-filled tube exhibits a higher effective energy absorption ratio under impact loading compared to quasi-static loading.