The utilization of sensible waste heat such as flue gas and industrial surplus heat is essential for energy saving. Supercritical CO2 power generation cycle is a promising way to be used in this field. In this paper, ...The utilization of sensible waste heat such as flue gas and industrial surplus heat is essential for energy saving. Supercritical CO2 power generation cycle is a promising way to be used in this field. In this paper, a new supercritical CO2 Rankine cycle coupled with an absorption refrigeration cycle is proposed, which consists of a reheating supercritical CO2 cycle, a mixed-effect Li Br-H2O absorption refrigeration cycle and solar subsystem including evacuated-tube collector and a hot water storage tank. The system has four variants according to the presence or absence of solar subsystem and net cooling energy output. The thermodynamic model of the proposed system was established and its performance was evaluated. The proposed system is able to realize cascade utilization of flue gas waste heat and efficient conversion of solar energy. It has much higher thermodynamic efficiency than the reference system(i.e., the conventional supercritical CO2 Brayton cycle). Taking combined power and cooling system driven by flue gas waste heat and solar energy as an example, its thermal efficiency and exergy efficiency are 20.37% and 54.18% respectively, compared with the 14.74% and 35.96% of the reference system. Energy Utilization Diagrams(EUD) are implemented to investigate the irreversible losses and variation of the exergy destruction in the energy conversion process. Parametric analysis in two key parameters is conducted to provide guidance for the system optimal design.展开更多
A novel power and cooling cogeneration system which combines a supercritical CO_(2) recompression cycle(SCRC), an ammonia-water absorption refrigeration cycle(AARC) and a Kalina cycle(KC) is proposed and investigated ...A novel power and cooling cogeneration system which combines a supercritical CO_(2) recompression cycle(SCRC), an ammonia-water absorption refrigeration cycle(AARC) and a Kalina cycle(KC) is proposed and investigated for the recovery of medium-temperature waste heat. The system is based on energy cascade utilization, and the waste heat can be fully converted through the simultaneous operation of the three sub-cycles. A steady-state mathematical model is built for further performance study of the proposed system. When the exhaust temperature is 505℃, it is shown that under designed conditions the thermal efficiency and exergy efficiency reach 30.74% and 61.55%, respectively. The exergy analysis results show that the main exergy destruction is concentrated in the heat recovery vapor generator(HRVG). Parametric study shows that the compressor inlet pressure, the SCRC pressure ratio, the main compressor and the turbine I inlet temperature, and the AARC generator pressure have significant effects on thermodynamic and economic performance of the combined system. The findings in this study could provide guidance for system design to achieve an efficient utilization of medium-temperature waste heat(e.g., exhaust heat from gas turbine, high-temperature fuel cells and internal combustion engine).展开更多
基金support of the China Postdoctoral Science Foundation(No.2018M641288)the Science and Technology Project of China Electric Power Planning&Engineering Institute(No.K201730-X)。
文摘The utilization of sensible waste heat such as flue gas and industrial surplus heat is essential for energy saving. Supercritical CO2 power generation cycle is a promising way to be used in this field. In this paper, a new supercritical CO2 Rankine cycle coupled with an absorption refrigeration cycle is proposed, which consists of a reheating supercritical CO2 cycle, a mixed-effect Li Br-H2O absorption refrigeration cycle and solar subsystem including evacuated-tube collector and a hot water storage tank. The system has four variants according to the presence or absence of solar subsystem and net cooling energy output. The thermodynamic model of the proposed system was established and its performance was evaluated. The proposed system is able to realize cascade utilization of flue gas waste heat and efficient conversion of solar energy. It has much higher thermodynamic efficiency than the reference system(i.e., the conventional supercritical CO2 Brayton cycle). Taking combined power and cooling system driven by flue gas waste heat and solar energy as an example, its thermal efficiency and exergy efficiency are 20.37% and 54.18% respectively, compared with the 14.74% and 35.96% of the reference system. Energy Utilization Diagrams(EUD) are implemented to investigate the irreversible losses and variation of the exergy destruction in the energy conversion process. Parametric analysis in two key parameters is conducted to provide guidance for the system optimal design.
基金supported by the Shandong Provincial Natural Science Foundation of China(No.ZR2019MEE045)the National Natural Science Foundation of China(No.51776203)the Key Project of National Natural Science Foundation of China(No.61733010)。
文摘A novel power and cooling cogeneration system which combines a supercritical CO_(2) recompression cycle(SCRC), an ammonia-water absorption refrigeration cycle(AARC) and a Kalina cycle(KC) is proposed and investigated for the recovery of medium-temperature waste heat. The system is based on energy cascade utilization, and the waste heat can be fully converted through the simultaneous operation of the three sub-cycles. A steady-state mathematical model is built for further performance study of the proposed system. When the exhaust temperature is 505℃, it is shown that under designed conditions the thermal efficiency and exergy efficiency reach 30.74% and 61.55%, respectively. The exergy analysis results show that the main exergy destruction is concentrated in the heat recovery vapor generator(HRVG). Parametric study shows that the compressor inlet pressure, the SCRC pressure ratio, the main compressor and the turbine I inlet temperature, and the AARC generator pressure have significant effects on thermodynamic and economic performance of the combined system. The findings in this study could provide guidance for system design to achieve an efficient utilization of medium-temperature waste heat(e.g., exhaust heat from gas turbine, high-temperature fuel cells and internal combustion engine).