Long-chain acyl coenzyme A synthetase(ACSL) is a member of the synthetase family encoded by a multigene family;it plays an important role in the absorption and transport of fatty acid.Here we review the roles of ACSL ...Long-chain acyl coenzyme A synthetase(ACSL) is a member of the synthetase family encoded by a multigene family;it plays an important role in the absorption and transport of fatty acid.Here we review the roles of ACSL in the regulating absorption and transport of fatty acid,as well as the connection between ACSL and some metabolic diseases.展开更多
In order to research the absorption and transportation differences ofglutamine containing small peptides and free glutamine in intestine of weaned piglets, 28-day-old weaned piglets were selected to get the sample for...In order to research the absorption and transportation differences ofglutamine containing small peptides and free glutamine in intestine of weaned piglets, 28-day-old weaned piglets were selected to get the sample for jejunum culture in vitro in this study. Trial 1 was conducted to study the stability of tripeptide (Arg-Gly-Gln) in the jejunum to determine the ideal culture time. It was designed into 2 treatments: control group (Kreb's solution, GC) and tripeptide group (by adding 556μmol/L of Arg-Gly-Gln to Kreb's solution, GP). They were cultured for 60 min. The absorption and transportation differences ofglutamine existing as Arg-Gly-Gln, Gly-Gln and free Gin were studied in trial 2. It was designed into 4 treatments: group 1 (G1, control group), Kreb's solution; Group 2 (G2), Kreb's solution+556 μmol/L Arg-Gly-Gln; group 3 (G3), Kreb's solution+556 μmol/L Gly-Gln and Arg; group 4 (G4), Kreb's solution+556 μmol/L arginine, glycine and glutamine. They were cultured for 40 minutes. The results indicated that the absorption and transportation of glutamine existing as Arg-Gly-Gln was more efficient than those of Gly-Gln while Gly-Gln was more efficient than free glutamine. Arg-Gly-Gln may be more excellent than Gly-Gln in physiological functions and nutrition potential.展开更多
An important property of moisture absorption and sweat discharge yarns is their water transport property. In the paper, two water transport models of moisture absorption and sweat discharge yarns were developed to inv...An important property of moisture absorption and sweat discharge yarns is their water transport property. In the paper, two water transport models of moisture absorption and sweat discharge yarns were developed to investigate the influence factors on their wicking rate. In parallel Column Pores Model, wicking rate is determined by the equivalent capillary radius R and length of the capillary tube L. In Pellets Accumulation Model, wicking rate is decided by the capillary radius r and length of the fiber unit assemble L0.展开更多
In this paper we investigate the asymptotic spectrum and accumulation of a transport operator A in slab geometry with continuous energy, anisotropic scattering and inhomogeneous medium. In L^p (1 ≤ p 〈 +∞) space...In this paper we investigate the asymptotic spectrum and accumulation of a transport operator A in slab geometry with continuous energy, anisotropic scattering and inhomogeneous medium. In L^p (1 ≤ p 〈 +∞) space we show a series of new results for the asymptotic point spectrum and accumulation of A.展开更多
The mechanism of the nonlinear concentration dependence of the intestinal absorption of fluorescein isothiocyanate dextran 4,000 (FD-4) was studied using in situ rat intestinal loops and the in vitro Ussing-type chamb...The mechanism of the nonlinear concentration dependence of the intestinal absorption of fluorescein isothiocyanate dextran 4,000 (FD-4) was studied using in situ rat intestinal loops and the in vitro Ussing-type chamber method. The intestinal absorption rate constant of FD-4, as evaluated by the intestinal loop method, increased significantly in a nonlinear fashion as the FD-4 concentration increased up to 0.2 mM and tended to decrease at concentrations higher than 0.2 mM. The mucosal-to-serosal permeation of FD-4 across rat ileal sheets, as evaluated by the in vitro Ussing-type chamber method, also increased in a nonlinear fashion in the low concentration range (0.01 - 0.02 mM), before decreasing as the concentration increased further, whereas serosal-to-mucosal permeation decreased in a concentration-dependent manner. In addition, mucosal-to-serosal flux and serosal-to-mucosal flux were increased and reduced in the presence of the metabolic inhibitor 2, 4-dinitrophenol, respectively. These results suggest that FD-4 is predominantly secreted into the intestinal lumen by an efflux transport system.展开更多
The energy transportation and accumulation effect for femtosecond(fs)laser ablation on metal targets were studied using both theoretical and experimental methods.Using finite difference method,numerical simulation of ...The energy transportation and accumulation effect for femtosecond(fs)laser ablation on metal targets were studied using both theoretical and experimental methods.Using finite difference method,numerical simulation of energy transportation characteristics on copper target ablated by femtosecond laser was performed.Energy accumulation effects on metals of silver and copper ablated by an amplified Ti:sapphire femtosecond laser system were then studied experimentally.The simulated results show that the electrons and lattices have different temperature evolvement characteristics in the ablation stage.The electron temperature increases sharply and reaches the maximum in several femtoseconds while it needs thousands of femtoseconds for lattice to reach the maximum temperature.The experimental results show that uniform laser-induced periodic surface structures(PSS)can be formed with the appropriate pulsed numbers and laser energy density.Electron-phonon coupling coefficient plays an important role in PSS formation in different metals.Surface ripples of Cu are more pronounced than those of Au under the same laser energy density.展开更多
By, introducing the random and systematic errors in simulated data computed from conventional frequency-scan and laterally resolved modulated free carrier absorption theory models, we investigate the relative determin...By, introducing the random and systematic errors in simulated data computed from conventional frequency-scan and laterally resolved modulated free carrier absorption theory models, we investigate the relative determination sensitivities of three electronic transport properties, namely, carrier lifetime carrier diffusivity and front surface recombination velocity of silicon wafers determined by frequency-scan and laterally resolved techniques. The phase and amplitude data with random errors as functions of the modulation frequency at zero pump-probe-beam separation or of the two-beam separation at four different modulation frequencies are simultaneously fitted to an appreciated carrier diffusion model to extract three transport parameters. The statistical results and fitted accuracies of the transport parameter determined by both techniques are theoretically analysed. Corresponding experimental results are carried out to compare to the simulated results. The simulated and experimental results show that the determination of the transport properties of silicon wafers by the laterally resolved technique are more accurate, as compared with that by the frequency-scan technique.展开更多
The aim of the study was to investigate whether phosphorus(P) transporters, type IIb sodium-dependent phosphate cotransporter(NaP-IIb) and inorganic phosphate transporter 2(PiT2), were directly involved in P absorptio...The aim of the study was to investigate whether phosphorus(P) transporters, type IIb sodium-dependent phosphate cotransporter(NaP-IIb) and inorganic phosphate transporter 2(PiT2), were directly involved in P absorption across primary cultured duodenal epithelial cell monolayers of chick embryos. The siRNAs against NaP-IIb or PiT2 were designed, synthesized and transfected into primary cultured duodenal epithelial cells of chick embryos. Then, the inhibitory efficiency of siRNAs against NaP-IIb or PiT2 was analyzed, and the most efficacious siRNAs were selected to be used for subsequent P absorption experiments. Briefly, primary cultured duodenal epithelial cells of chick embryos were transfected with either NaP-IIb or PiT2 siRNAs and grown in confluent monolayers on transwell plates. The untransfected or transfected cell monolayers were then incubated in an uptake medium containing 0 or 0.25 mmol L^(–1) of P as KH_(2) PO_(4) to measure the P absorption across duodenal epithelial cell monolayers. The results showed that among the siRNAs designed, si-1372 and si-890 were demonstrated to be the most effective in inhibiting the NaPIIb and PiT2 expressions, respectively. Supplemental P increased(P=0.065) the protein abundance of PiT2 and enhanced(P<0.0001) P absorption in primary cultured duodenal epithelial cell of chick embryos. Furthermore, NaPIIb silencing decreased(P=0.07) P absorption across duodenal epithelial cell monolayers, while PiT2 silencing had no effect(P=0.345). It is concluded that the NaP-IIb, but not PiT2, might be directly involved in the P absorption of chick duodenal epithelial cells.展开更多
Plant tolerance to aluminum(Al)toxicity can be enhanced by an ectomycorrhizal(ECM)fungus through biological filtering or physical blockage.To understand the roles of ECM colonization in Al absorption with regard to Al...Plant tolerance to aluminum(Al)toxicity can be enhanced by an ectomycorrhizal(ECM)fungus through biological filtering or physical blockage.To understand the roles of ECM colonization in Al absorption with regard to Al tolerance,Pinus massoniana seedlings were inoculated with either Lactarius deliciosus(L.:Fr.)Gray isolate 2 or Pisolithus tinctorius(Pers.)Coker et Couch isolate 715 and cultivated in an acid yellow soil with or without 1.0 mM Al^(3+)irrigation for 10 weeks.Biomass production,Al bioaccumulation and transport in seedlings colonized by the two ECM fungi were compared,and the three absorption kinetics(pseudo-first order,pseudo-second order and intraparticle diffusion)models used to evaluate variances in root Al^(3+)absorption capacity.Results show that both fungi increased aboveground biomass and Al tolerance of P.massoniana seedlings,but L.deliciosus 2 was more effective than P.tinctorius 715.Lower Al absorption capacity,fewer available active sites and decreased affinity and boundary layer thickness for Al^(3+),and higher Al accumulation and translocation contributed to the increased Al tolerance in the ECM-inoculated seedlings.These results advance our understanding of the mechanisms and strategies in plant Alto lerance conferred by ECM fungi and show that inoculation with L.deliciosus will better enhance Al tolerance in P.massoniana seedlings used for forest plantation and ecosystem restoration in acidic soils,particularly in Southwest China and similar soils worldwide.展开更多
[Objective] The aim was to discuss the group dry matter accumulation and economic benefits under the patterns of intercropping maize (Zea mays L.) with soy-bean [Glycine max (L.) Merril ]. [Methods] Zhengdan-958 a...[Objective] The aim was to discuss the group dry matter accumulation and economic benefits under the patterns of intercropping maize (Zea mays L.) with soy-bean [Glycine max (L.) Merril ]. [Methods] Zhengdan-958 and Luhuang-1 were used as the testing breeds to study the effects of intercropping patterns on dry matter accumulation and transportation of maize and soybean in Huang-huai-hai. [Results] For maize, the dry matter accumulation amounts per hectare of intercropping was significant higher than that of the monoculture patterns, especial y after silking, when it reached extremely level; while for soybean, the dry matter accumulation amounts before flowering and after flowering of monocropping were al significantly higher than that of the intercropping patterns. For both maize and soybean, the transfer amounts of monocropping were al significantly or extremely significantly higher than that of intercropping; and the transfer ratio of maize intercropping was 0.59% higher than that of maize monocropping, while for soybean, it was 4.74% higher. Fitted dry matter accumulation with Logistic equation, it showed that the difference in maximum dry matter accumulation rate between maize monocropping and intercropping reached significant level, while for soybean, the maximum dry matter accumulation rate and its appearance time as wel as duration time between intercropping and monocropping were al reached significant level. The total land equivalent ratio of intercropping was 1.30. From yield and output value, the total yield of intercropping were 10.97 t/hm2, 0.64% and 326.85% higher than monocropping of maize and soy-bean, respectively. The total output value of intercropping was 25 796.23 yuan/hm2, respectively 12.67% and 104.68% higher than of maize and soybean monocropping. [Conclusion] The study lays a basis for improving grain yield and economic benefits.展开更多
The Indo-Gangetic Plain(IGP)is a major regional and global emitter of atmospheric pollutants,which adversely affect surrounding areas such as the Himalayas.We present a comprehensive dataset on carbonaceous aerosol(CA...The Indo-Gangetic Plain(IGP)is a major regional and global emitter of atmospheric pollutants,which adversely affect surrounding areas such as the Himalayas.We present a comprehensive dataset on carbonaceous aerosol(CA)composition,radiocarbon(D14C)-based source apportionment,and light absorption of total suspended particle(TSP)samples collected over a 3-year period from high-altitude Jomsom in the central Himalayas.The 3-year mean TSP,organic carbon(OC),and elemental carbon(EC)concentrations were 92.0±28.6,9.74±6.31,and 2.02±1.35 lg m^(3),respectively,with the highest concentrations observed during the pre-monsoon season,followed by the post-monsoon,winter,and monsoon seasons.The △^(14)C analysis revealed that the contribution of fossil fuel combustion(ffossil)to EC was 47.9%±11.5%,which is consistent with observations in urban and remote regions in South Asia and attests that EC likely arrives in Jomsom from upwind IGP sources via long-range transport.In addition,the lowest f_(fossil)(38.7%±13.3%)was observed in winter,indicating large contributions in this season from local biomass burning.The mass absorption cross-section of EC(MACEC:8.27±1.76 m^(2)/g)and watersoluble organic carbon(MACWSOC:0.98±0.45 m^(2)/g)were slightly higher and lower than those reported in urban regions,respectively,indicating that CA undergo an aging process.Organic aerosol coating during transport and variation of biomass burning probably led to the seasonal variation in MAC of two components.Overall,WSOC contributed considerably to the light absorption(11.1%±4.23%)of EC.The findings suggest that to protect glaciers of the Himalayas from pollution-related melting,it is essential to mitigate emissions from the IGP.展开更多
Zinc(Zn) is an important essential microelement for wheat.In order to study the characteristics of Zn absorption,accumulation and distribution in highly-yielding winter wheat(with a grain yield of 9 000 kg ha-1),f...Zinc(Zn) is an important essential microelement for wheat.In order to study the characteristics of Zn absorption,accumulation and distribution in highly-yielding winter wheat(with a grain yield of 9 000 kg ha-1),field experiments were conducted in Gaocheng County of Hebei Province,China.Four winter wheat cultivars,i.e.,Shimai 14,Jifeng 703,Shimai 12,and Shixin 828,and four cultivars,i.e.,Temai 1,Shimai 12,Shixin 531,and Shixin 828,were used in the experiment,during 2004-2005 and 2005-2006,respectively.Plant samples were taken from the plots at each growing stage for Zn concentration analysis.The main results showed that the concentration of Zn in various above-ground organs of wheat was 9.5-112.5 mg kg-1 at different growing stages.The organ with the highest Zn concentration differed with the change of growth center at different growing stages.Accumulation of Zn in leaf blades was the highest among all the organs during early growing period,and more than 50% of the Zn accumulation was distributed to leaf blades before jointing,and higher than that to other organs.In late growing period,however,the accumulation of Zn in grains was the highest,and 58.1% of the Zn accumulation was distributed in grains at maturity.The total accumulation of Zn in wheat plant during its life span ranged from 384.9 to 475.9 g ha-1.The amount of Zn required for the formation of 100 kg grain yield ranged from 4.3 to 5.2 g.All the organs were ordered in such a sequence that leaf blades 〉 spikes 〉 leaf sheaths 〉 stems according to their net absorption and transportation of Zn as well as their contribution to Zn accumulation in grains.58.2-60.3% of the Zn accumulated in grains was redistributed from other organs,mostly from leaf blades.Concentration and accumulation of Zn in all the organs of wheat was high during early and middle growing periods,while accumulation of Zn in grains during late growing period mainly depended on the redistribution from other organs.According to these characteristics of Zn absorption and accumulation,Zn should be applied as seed dressing or basal fertilizer,so as to accelerate the early growth and Zn absorption of wheat.展开更多
[Objectives]To explore the differences in nitrogen accumulation and transport characteristics and grain protein content of wheat varieties with different nitrogen efficiencies and their responses to irrigation.[Method...[Objectives]To explore the differences in nitrogen accumulation and transport characteristics and grain protein content of wheat varieties with different nitrogen efficiencies and their responses to irrigation.[Methods]Under field conditions,using nitrogen-inefficient varieties Luohan 17 and Xinhua 818 and nitrogen-efficient varieties Bainong 418 and Bainong 419 as materials,this paper studied the nitrogen accumulation and transport characteristics,grain protein content and protein yield of wheat with different nitrogen efficiencies under rainfed and irrigated conditions.[Results]Compared with the nitrogen-inefficient wheat varieties,the pre-flowering nitrogen transport and the shoot nitrogen accumulation at the mature stage of nitrogen-efficient wheat varieties decreased by 15.08%and 28.25%,respectively,and the grain protein content decreased by 11.66%,under rainfed conditions.Compared with rainfed conditions,nitrogen accumulation in shoots of nitrogen-inefficient wheat varieties and nitrogen-efficient wheat varieties at the mature stage increased by 6.59%and 67.05%,respectively,and grain protein content decreased by 13.50%and 3.47%,respectively,under irrigated conditions.The two nitrogen efficiency types of wheat had different responses to irrigation after flowering.After irrigation,the nitrogen accumulation of nitrogen-efficient varieties increased by 274.80%,while that of nitrogen-inefficient varieties decreased by 51.15%.Finally,the grain protein yield of nitrogen-inefficient wheat varieties remained stable,while the grain protein yield of nitrogen-efficient wheat varieties increased by 40.37%.[Conclusions]The nitrogen accumulation and transport characteristics and grain protein content of wheat varieties with different nitrogen efficiencies are different under different irrigation conditions.In production,it is necessary to take different irrigation measures in accordance with the difference in nitrogen efficiency of wheat varieties,so as to increase the protein content of wheat grains.展开更多
Iron is a critical micronutrient, and iron derived from heme contributes a large proportion of the total iron absorbed in a typical Western diet. Heme iron is absorbed by different mechanisms than non-heme iron, but d...Iron is a critical micronutrient, and iron derived from heme contributes a large proportion of the total iron absorbed in a typical Western diet. Heme iron is absorbed by different mechanisms than non-heme iron, but despite considerable study over many years these mechanisms remain poorly understood. This review provides an overview of the importance of heme iron in the diet and discusses the two prevailing hypotheses of heme absorption; namely receptor mediated endocytosis of heme, and direct transport into the intestinal enterocyte by recently discovered heme transporters. A specific emphasis is placed on the questions surrounding the site of heme catabolism and the identity of the enzyme that performs this task. Additionally, we present the hypothesis that a non-heme iron transport protein may be required for heme iron absorption and discuss the experiences of our laboratory in examining this hypothesis.展开更多
The unconformity surface at the bottom of the Paleogene is one of the most important migration pathways in the Sikeshu Sag of the Junggar Basin,which consists of three layers:upper coarse clastic rock,lower weatherin...The unconformity surface at the bottom of the Paleogene is one of the most important migration pathways in the Sikeshu Sag of the Junggar Basin,which consists of three layers:upper coarse clastic rock,lower weathering crust and leached zone.The upper coarse clastic rock is characterized by higher density and lower SDT and gamma-ray logging parameters,while the lower weathering crust displays opposite features.The transport coefficient of the unconformity surface is controlled by its position in respect to the basal sandstone; it is higher in the ramp region but lower in the adjacent uplifted and sag areas.The content of saturated hydrocarbons increases with the decrease of the content of nonhydrocarbons and asphaltenes.The content of benzo[c] carbazole decreases as the content of benzo[a]carbazole and [alkyl carbazole]/[alkyl + benzo carbazole] increases.This suggests that the unconformity surface is an efficient medium for the transportation of hydrocarbons.展开更多
Through the analysis of the faults and their internal structure in Zhu I Depression,it is found that the internal structure of the late fault is obviously segmented vertically.It develops unitary structure(simple faul...Through the analysis of the faults and their internal structure in Zhu I Depression,it is found that the internal structure of the late fault is obviously segmented vertically.It develops unitary structure(simple fault plane)in shallow layers,binary structure(induced fracture zone in hanging wall and sliding fracture zone in footwall)in middle,layers and ternary structure(induced fracture zone in hanging wall and sliding fracture zone in middle,and induced fracture zone in footwall)in deep layers.Because the induced fracture zone is a high porosity and permeability zone,and the sliding fracture zone is a low porosity and ultra-low permeability zone,the late fault in middle layers has the character of"transporting while sealing".The late fault can transport hydrocarbon by its induced fracture zone in the side of the hanging wall and seal hydrocarbon by its sliding fracture zone in the side of the footwall.In deep layers,the late fault has the character of"dual-transportation",induced fracture zones in both sides of hanging wall and footwall can transport hydrocarbon.The early fault that only developed in the deep layers is presumed to be unitary structure,which plays a completely sealing role in the process of hydrocarbon migration and accumulation due to inactivity during the hydrocarbon filling period.Controlled by hydrocarbon source,early/late faults,sand bodies and traps,two reservoir-forming models of"inverted L"and"stereo-spiral"can be proposed in middle layers,while two reservoir-forming models of"cross fault"and"lateral fault sealing"are developed in the deep layers of Zhu I Depression.展开更多
Conditions in rat and turtle small intestine tissue where glucose and glycine transport is inhibited while glucose-induced Na+ transport is preserved are described. The generally accepted model for the Na+-dependent t...Conditions in rat and turtle small intestine tissue where glucose and glycine transport is inhibited while glucose-induced Na+ transport is preserved are described. The generally accepted model for the Na+-dependent transporter (а single channel for the Na+ and nutrient) does not account for the data obtained from the analysis of the interaction between the transport of glucose, glycine, and Na+ at different temperatures and the effect of inhibitors оn these рroсеssеs. The phenomenon of temperature uncoupling of Na+ and nutrient transport саn best bе described bу а two-pathway model with а gate mechanism. According to this model, the Na+-dependent transporter has at least two pathways: оnе for Na+ and another for nutrients. The model рrovidеs for the passage of Na+ in both directions along а channel opened bу glucose. Experiments are carried out using the addition of glucose and glycine on backgrounds of glycine and glucose, respectively. It has been hypothesized that when all three transporters (for Na+, glucose and glycine) are unite in a single structure, then there should be “competitive relations” between short-circuit current changes on glycine and glucose for sodium ions passing through its transporter.展开更多
A theoretical approach based on differential radiative transport is proposed to quantitatively analyze the self- absorption and reemission effects on the emission spectrum for right angle excitation-detection photolum...A theoretical approach based on differential radiative transport is proposed to quantitatively analyze the self- absorption and reemission effects on the emission spectrum for right angle excitation-detection photoluminescence mea- surements, and the wavelength dependence of the reemission effect is taken into account. Simulations and experiments are performed using rhodamine 6G solutions in ethanol as model samples. It is shown that the self-absorption effect is the dominant effect on the detected spectrum by inducing pseudo red-shift and reducing total intensity; whereas the reemission effect partly compensates for signal decrease and also results in an apparent signal gain at the wavelengths without ab- sorption. Both effects decrease with the decrease in the sample concentration and the propagation distance of the emission light inside the sample. We therefore suggest that diluted solutions are required for accurate photoluminescence spectrum measurements and photoluminescence-based measurements.展开更多
The research aimed to evaluate the absorption and removal capacity of Cu, Pb, Fe and Zn from Scirpus californicus for potential use in the remediation of polluted aquatic environments. Initially, Scirpus californicus ...The research aimed to evaluate the absorption and removal capacity of Cu, Pb, Fe and Zn from Scirpus californicus for potential use in the remediation of polluted aquatic environments. Initially, Scirpus californicus plants were conditioned in 1.5 liters of 10 ppm Cu solution at a pH of 2.3 as well as Pb, Fe and Zn. Subsequently, the concentration of heavy metals in the root-rhizome, submerged stem and aerial stem was determined;the solution and pH were also analyzed. The greatest capacity of absorption and accumulation occurred in the root-rhizome reaching values for Cu of 491.84, Pb of 739.43, Zn of 830.71 and Fe of 2624.72 mg/kg dry followed by the submerged stem and low values for the aerial stem. The removal efficiency of Cu from the solution was 52.10%, Pb 53.50%, Fe 48.00% and Zn 50.20%. It is concluded that the contact time has a significant effect on the absorption and removal capacity of the metals under study.展开更多
Astragalus sinicus is a commonly used legume green manure that fixes atmospheric N2 and accumulates mineral nutrients and organic substances that are beneficial to soils and subsequent crops.However,little is known ab...Astragalus sinicus is a commonly used legume green manure that fixes atmospheric N2 and accumulates mineral nutrients and organic substances that are beneficial to soils and subsequent crops.However,little is known about genotypic variation in,and molecular mechanisms of,Pi(phosphate)uptake and storage in A.sinicus.We recorded the morphological responses of six A.sinicus cultivars from four regions of China to external Pi application and measured their Pi accumulation.We identified full-length transcripts of Pi-signaling and Pi-homeostasis regulators by sequencing and measured the expression level of these genes by qRT-PCR.The major components in Pi signaling and Pi homeostasis were largely conserved between A.sinicus and the model species rice and Arabidopsis.Different A.sinicus varieties responded differently to low-phosphorus(P)stress,and their Pi accumulation was positively correlated with the expression of vacuolar Pi influx gene(SYG1/PHO81/XPR1-MAJOR FACILITATOR SUPERFAMILY(SPX-MFS)-TYPE PROTEIN)AsSPXMFS2 and negatively correlated with the expression of the vacuolar Pi efflux gene(VACUOLAR Pi EFFLUX TRANSPORTER)AsVPE1.We identified key Pi-signaling and Pihomeostasis regulators in A.sinicus.The expression of vacuolar Pi transporter genes could be used as an index to select A.sinicus accessions with high Pi accumulation.展开更多
基金Supported by the National Natural Science Foundation of China(81373465)
文摘Long-chain acyl coenzyme A synthetase(ACSL) is a member of the synthetase family encoded by a multigene family;it plays an important role in the absorption and transport of fatty acid.Here we review the roles of ACSL in the regulating absorption and transport of fatty acid,as well as the connection between ACSL and some metabolic diseases.
文摘In order to research the absorption and transportation differences ofglutamine containing small peptides and free glutamine in intestine of weaned piglets, 28-day-old weaned piglets were selected to get the sample for jejunum culture in vitro in this study. Trial 1 was conducted to study the stability of tripeptide (Arg-Gly-Gln) in the jejunum to determine the ideal culture time. It was designed into 2 treatments: control group (Kreb's solution, GC) and tripeptide group (by adding 556μmol/L of Arg-Gly-Gln to Kreb's solution, GP). They were cultured for 60 min. The absorption and transportation differences ofglutamine existing as Arg-Gly-Gln, Gly-Gln and free Gin were studied in trial 2. It was designed into 4 treatments: group 1 (G1, control group), Kreb's solution; Group 2 (G2), Kreb's solution+556 μmol/L Arg-Gly-Gln; group 3 (G3), Kreb's solution+556 μmol/L Gly-Gln and Arg; group 4 (G4), Kreb's solution+556 μmol/L arginine, glycine and glutamine. They were cultured for 40 minutes. The results indicated that the absorption and transportation of glutamine existing as Arg-Gly-Gln was more efficient than those of Gly-Gln while Gly-Gln was more efficient than free glutamine. Arg-Gly-Gln may be more excellent than Gly-Gln in physiological functions and nutrition potential.
基金Supported by National Nature Science Fund ( No.50643014)"Yangtze Scholar and Innovation Team Development Plan"Innovation Team(No.IRT0654)Science Research Fund of Zhejiang Sci-Tech University (No.0601065-Y)
文摘An important property of moisture absorption and sweat discharge yarns is their water transport property. In the paper, two water transport models of moisture absorption and sweat discharge yarns were developed to investigate the influence factors on their wicking rate. In parallel Column Pores Model, wicking rate is determined by the equivalent capillary radius R and length of the capillary tube L. In Pellets Accumulation Model, wicking rate is decided by the capillary radius r and length of the fiber unit assemble L0.
基金Foundation item: Zhejiang Provincial Natural Science Foundation (102002) of China.
文摘In this paper we investigate the asymptotic spectrum and accumulation of a transport operator A in slab geometry with continuous energy, anisotropic scattering and inhomogeneous medium. In L^p (1 ≤ p 〈 +∞) space we show a series of new results for the asymptotic point spectrum and accumulation of A.
文摘The mechanism of the nonlinear concentration dependence of the intestinal absorption of fluorescein isothiocyanate dextran 4,000 (FD-4) was studied using in situ rat intestinal loops and the in vitro Ussing-type chamber method. The intestinal absorption rate constant of FD-4, as evaluated by the intestinal loop method, increased significantly in a nonlinear fashion as the FD-4 concentration increased up to 0.2 mM and tended to decrease at concentrations higher than 0.2 mM. The mucosal-to-serosal permeation of FD-4 across rat ileal sheets, as evaluated by the in vitro Ussing-type chamber method, also increased in a nonlinear fashion in the low concentration range (0.01 - 0.02 mM), before decreasing as the concentration increased further, whereas serosal-to-mucosal permeation decreased in a concentration-dependent manner. In addition, mucosal-to-serosal flux and serosal-to-mucosal flux were increased and reduced in the presence of the metabolic inhibitor 2, 4-dinitrophenol, respectively. These results suggest that FD-4 is predominantly secreted into the intestinal lumen by an efflux transport system.
基金Project(10604017)supported by the National Natural Science Foundation of ChinaProject(Q20091303)supported by the Education Branch of Hubei Province,China
文摘The energy transportation and accumulation effect for femtosecond(fs)laser ablation on metal targets were studied using both theoretical and experimental methods.Using finite difference method,numerical simulation of energy transportation characteristics on copper target ablated by femtosecond laser was performed.Energy accumulation effects on metals of silver and copper ablated by an amplified Ti:sapphire femtosecond laser system were then studied experimentally.The simulated results show that the electrons and lattices have different temperature evolvement characteristics in the ablation stage.The electron temperature increases sharply and reaches the maximum in several femtoseconds while it needs thousands of femtoseconds for lattice to reach the maximum temperature.The experimental results show that uniform laser-induced periodic surface structures(PSS)can be formed with the appropriate pulsed numbers and laser energy density.Electron-phonon coupling coefficient plays an important role in PSS formation in different metals.Surface ripples of Cu are more pronounced than those of Au under the same laser energy density.
基金Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. ZYGX2009J051)
文摘By, introducing the random and systematic errors in simulated data computed from conventional frequency-scan and laterally resolved modulated free carrier absorption theory models, we investigate the relative determination sensitivities of three electronic transport properties, namely, carrier lifetime carrier diffusivity and front surface recombination velocity of silicon wafers determined by frequency-scan and laterally resolved techniques. The phase and amplitude data with random errors as functions of the modulation frequency at zero pump-probe-beam separation or of the two-beam separation at four different modulation frequencies are simultaneously fitted to an appreciated carrier diffusion model to extract three transport parameters. The statistical results and fitted accuracies of the transport parameter determined by both techniques are theoretically analysed. Corresponding experimental results are carried out to compare to the simulated results. The simulated and experimental results show that the determination of the transport properties of silicon wafers by the laterally resolved technique are more accurate, as compared with that by the frequency-scan technique.
基金supported by the Key Program of the National Natural Science Foundation of China(31630073)the National Natural Science Foundation of China(31472116)+2 种基金the National Key R&D Program of China(2017YFD0502200)the China Agriculture Research System of MOF and MARA(CARS-41)the Agricultural Science and Technology Innovation Program(ASTIP-IAS09)。
文摘The aim of the study was to investigate whether phosphorus(P) transporters, type IIb sodium-dependent phosphate cotransporter(NaP-IIb) and inorganic phosphate transporter 2(PiT2), were directly involved in P absorption across primary cultured duodenal epithelial cell monolayers of chick embryos. The siRNAs against NaP-IIb or PiT2 were designed, synthesized and transfected into primary cultured duodenal epithelial cells of chick embryos. Then, the inhibitory efficiency of siRNAs against NaP-IIb or PiT2 was analyzed, and the most efficacious siRNAs were selected to be used for subsequent P absorption experiments. Briefly, primary cultured duodenal epithelial cells of chick embryos were transfected with either NaP-IIb or PiT2 siRNAs and grown in confluent monolayers on transwell plates. The untransfected or transfected cell monolayers were then incubated in an uptake medium containing 0 or 0.25 mmol L^(–1) of P as KH_(2) PO_(4) to measure the P absorption across duodenal epithelial cell monolayers. The results showed that among the siRNAs designed, si-1372 and si-890 were demonstrated to be the most effective in inhibiting the NaPIIb and PiT2 expressions, respectively. Supplemental P increased(P=0.065) the protein abundance of PiT2 and enhanced(P<0.0001) P absorption in primary cultured duodenal epithelial cell of chick embryos. Furthermore, NaPIIb silencing decreased(P=0.07) P absorption across duodenal epithelial cell monolayers, while PiT2 silencing had no effect(P=0.345). It is concluded that the NaP-IIb, but not PiT2, might be directly involved in the P absorption of chick duodenal epithelial cells.
基金supported by the National Natural Science Foundation of China (31570599 and 32171753)。
文摘Plant tolerance to aluminum(Al)toxicity can be enhanced by an ectomycorrhizal(ECM)fungus through biological filtering or physical blockage.To understand the roles of ECM colonization in Al absorption with regard to Al tolerance,Pinus massoniana seedlings were inoculated with either Lactarius deliciosus(L.:Fr.)Gray isolate 2 or Pisolithus tinctorius(Pers.)Coker et Couch isolate 715 and cultivated in an acid yellow soil with or without 1.0 mM Al^(3+)irrigation for 10 weeks.Biomass production,Al bioaccumulation and transport in seedlings colonized by the two ECM fungi were compared,and the three absorption kinetics(pseudo-first order,pseudo-second order and intraparticle diffusion)models used to evaluate variances in root Al^(3+)absorption capacity.Results show that both fungi increased aboveground biomass and Al tolerance of P.massoniana seedlings,but L.deliciosus 2 was more effective than P.tinctorius 715.Lower Al absorption capacity,fewer available active sites and decreased affinity and boundary layer thickness for Al^(3+),and higher Al accumulation and translocation contributed to the increased Al tolerance in the ECM-inoculated seedlings.These results advance our understanding of the mechanisms and strategies in plant Alto lerance conferred by ECM fungi and show that inoculation with L.deliciosus will better enhance Al tolerance in P.massoniana seedlings used for forest plantation and ecosystem restoration in acidic soils,particularly in Southwest China and similar soils worldwide.
基金Supported by the National Transformation Project for Agriculture Science and Technology Achievements(2011GB2C300011)the National Science and Technology Funds for Agriculture during the Twelfth Five-year Plan(2011BAD35B06-4)~~
文摘[Objective] The aim was to discuss the group dry matter accumulation and economic benefits under the patterns of intercropping maize (Zea mays L.) with soy-bean [Glycine max (L.) Merril ]. [Methods] Zhengdan-958 and Luhuang-1 were used as the testing breeds to study the effects of intercropping patterns on dry matter accumulation and transportation of maize and soybean in Huang-huai-hai. [Results] For maize, the dry matter accumulation amounts per hectare of intercropping was significant higher than that of the monoculture patterns, especial y after silking, when it reached extremely level; while for soybean, the dry matter accumulation amounts before flowering and after flowering of monocropping were al significantly higher than that of the intercropping patterns. For both maize and soybean, the transfer amounts of monocropping were al significantly or extremely significantly higher than that of intercropping; and the transfer ratio of maize intercropping was 0.59% higher than that of maize monocropping, while for soybean, it was 4.74% higher. Fitted dry matter accumulation with Logistic equation, it showed that the difference in maximum dry matter accumulation rate between maize monocropping and intercropping reached significant level, while for soybean, the maximum dry matter accumulation rate and its appearance time as wel as duration time between intercropping and monocropping were al reached significant level. The total land equivalent ratio of intercropping was 1.30. From yield and output value, the total yield of intercropping were 10.97 t/hm2, 0.64% and 326.85% higher than monocropping of maize and soy-bean, respectively. The total output value of intercropping was 25 796.23 yuan/hm2, respectively 12.67% and 104.68% higher than of maize and soybean monocropping. [Conclusion] The study lays a basis for improving grain yield and economic benefits.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(2019QZKK0605)Pan-Third Pole Environment Study for a Green Silk Road(Pan-TPE)(XDA20040501)+3 种基金the National Natural Science Foundation of China(41705132,41630754)the State Key Laboratory of Cryospheric Science(SKLCS-ZZ-2022)the Asia-Pacific Network for Global Change Research(APN)(CRECS2020-07MY-Tripathee)as well as the Swedish Research Council VR Distinguished Professorship grant toÖ.Gustafsson(no.2017-01601).
文摘The Indo-Gangetic Plain(IGP)is a major regional and global emitter of atmospheric pollutants,which adversely affect surrounding areas such as the Himalayas.We present a comprehensive dataset on carbonaceous aerosol(CA)composition,radiocarbon(D14C)-based source apportionment,and light absorption of total suspended particle(TSP)samples collected over a 3-year period from high-altitude Jomsom in the central Himalayas.The 3-year mean TSP,organic carbon(OC),and elemental carbon(EC)concentrations were 92.0±28.6,9.74±6.31,and 2.02±1.35 lg m^(3),respectively,with the highest concentrations observed during the pre-monsoon season,followed by the post-monsoon,winter,and monsoon seasons.The △^(14)C analysis revealed that the contribution of fossil fuel combustion(ffossil)to EC was 47.9%±11.5%,which is consistent with observations in urban and remote regions in South Asia and attests that EC likely arrives in Jomsom from upwind IGP sources via long-range transport.In addition,the lowest f_(fossil)(38.7%±13.3%)was observed in winter,indicating large contributions in this season from local biomass burning.The mass absorption cross-section of EC(MACEC:8.27±1.76 m^(2)/g)and watersoluble organic carbon(MACWSOC:0.98±0.45 m^(2)/g)were slightly higher and lower than those reported in urban regions,respectively,indicating that CA undergo an aging process.Organic aerosol coating during transport and variation of biomass burning probably led to the seasonal variation in MAC of two components.Overall,WSOC contributed considerably to the light absorption(11.1%±4.23%)of EC.The findings suggest that to protect glaciers of the Himalayas from pollution-related melting,it is essential to mitigate emissions from the IGP.
基金supported by the Key Technologies R&D Program of China during the 11th Five-Year Plan period (2006BAD02A08)the Earmarked Fund for Modern Agro-Industry Technology Research System,China
文摘Zinc(Zn) is an important essential microelement for wheat.In order to study the characteristics of Zn absorption,accumulation and distribution in highly-yielding winter wheat(with a grain yield of 9 000 kg ha-1),field experiments were conducted in Gaocheng County of Hebei Province,China.Four winter wheat cultivars,i.e.,Shimai 14,Jifeng 703,Shimai 12,and Shixin 828,and four cultivars,i.e.,Temai 1,Shimai 12,Shixin 531,and Shixin 828,were used in the experiment,during 2004-2005 and 2005-2006,respectively.Plant samples were taken from the plots at each growing stage for Zn concentration analysis.The main results showed that the concentration of Zn in various above-ground organs of wheat was 9.5-112.5 mg kg-1 at different growing stages.The organ with the highest Zn concentration differed with the change of growth center at different growing stages.Accumulation of Zn in leaf blades was the highest among all the organs during early growing period,and more than 50% of the Zn accumulation was distributed to leaf blades before jointing,and higher than that to other organs.In late growing period,however,the accumulation of Zn in grains was the highest,and 58.1% of the Zn accumulation was distributed in grains at maturity.The total accumulation of Zn in wheat plant during its life span ranged from 384.9 to 475.9 g ha-1.The amount of Zn required for the formation of 100 kg grain yield ranged from 4.3 to 5.2 g.All the organs were ordered in such a sequence that leaf blades 〉 spikes 〉 leaf sheaths 〉 stems according to their net absorption and transportation of Zn as well as their contribution to Zn accumulation in grains.58.2-60.3% of the Zn accumulated in grains was redistributed from other organs,mostly from leaf blades.Concentration and accumulation of Zn in all the organs of wheat was high during early and middle growing periods,while accumulation of Zn in grains during late growing period mainly depended on the redistribution from other organs.According to these characteristics of Zn absorption and accumulation,Zn should be applied as seed dressing or basal fertilizer,so as to accelerate the early growth and Zn absorption of wheat.
基金Doctoral Research Start-up Fund Project of Henan University of Science and Technology(13480082).
文摘[Objectives]To explore the differences in nitrogen accumulation and transport characteristics and grain protein content of wheat varieties with different nitrogen efficiencies and their responses to irrigation.[Methods]Under field conditions,using nitrogen-inefficient varieties Luohan 17 and Xinhua 818 and nitrogen-efficient varieties Bainong 418 and Bainong 419 as materials,this paper studied the nitrogen accumulation and transport characteristics,grain protein content and protein yield of wheat with different nitrogen efficiencies under rainfed and irrigated conditions.[Results]Compared with the nitrogen-inefficient wheat varieties,the pre-flowering nitrogen transport and the shoot nitrogen accumulation at the mature stage of nitrogen-efficient wheat varieties decreased by 15.08%and 28.25%,respectively,and the grain protein content decreased by 11.66%,under rainfed conditions.Compared with rainfed conditions,nitrogen accumulation in shoots of nitrogen-inefficient wheat varieties and nitrogen-efficient wheat varieties at the mature stage increased by 6.59%and 67.05%,respectively,and grain protein content decreased by 13.50%and 3.47%,respectively,under irrigated conditions.The two nitrogen efficiency types of wheat had different responses to irrigation after flowering.After irrigation,the nitrogen accumulation of nitrogen-efficient varieties increased by 274.80%,while that of nitrogen-inefficient varieties decreased by 51.15%.Finally,the grain protein yield of nitrogen-inefficient wheat varieties remained stable,while the grain protein yield of nitrogen-efficient wheat varieties increased by 40.37%.[Conclusions]The nitrogen accumulation and transport characteristics and grain protein content of wheat varieties with different nitrogen efficiencies are different under different irrigation conditions.In production,it is necessary to take different irrigation measures in accordance with the difference in nitrogen efficiency of wheat varieties,so as to increase the protein content of wheat grains.
文摘Iron is a critical micronutrient, and iron derived from heme contributes a large proportion of the total iron absorbed in a typical Western diet. Heme iron is absorbed by different mechanisms than non-heme iron, but despite considerable study over many years these mechanisms remain poorly understood. This review provides an overview of the importance of heme iron in the diet and discusses the two prevailing hypotheses of heme absorption; namely receptor mediated endocytosis of heme, and direct transport into the intestinal enterocyte by recently discovered heme transporters. A specific emphasis is placed on the questions surrounding the site of heme catabolism and the identity of the enzyme that performs this task. Additionally, we present the hypothesis that a non-heme iron transport protein may be required for heme iron absorption and discuss the experiences of our laboratory in examining this hypothesis.
基金fnancially supported by the National Key Project of Science and Technology for Development of Large-size Oil&Gas Fields and Coal-bed Gas(Grant No.2008ZX05003-002)by the State Key Laboratory of Petroleum Resources and Prospecting(No.prp2009-02)The study is a contribution to IGCP#592 Project
文摘The unconformity surface at the bottom of the Paleogene is one of the most important migration pathways in the Sikeshu Sag of the Junggar Basin,which consists of three layers:upper coarse clastic rock,lower weathering crust and leached zone.The upper coarse clastic rock is characterized by higher density and lower SDT and gamma-ray logging parameters,while the lower weathering crust displays opposite features.The transport coefficient of the unconformity surface is controlled by its position in respect to the basal sandstone; it is higher in the ramp region but lower in the adjacent uplifted and sag areas.The content of saturated hydrocarbons increases with the decrease of the content of nonhydrocarbons and asphaltenes.The content of benzo[c] carbazole decreases as the content of benzo[a]carbazole and [alkyl carbazole]/[alkyl + benzo carbazole] increases.This suggests that the unconformity surface is an efficient medium for the transportation of hydrocarbons.
基金The National Science and Technology Major Project of the Ministry of Science and Technology of China under contract No.2016ZX05024-002
文摘Through the analysis of the faults and their internal structure in Zhu I Depression,it is found that the internal structure of the late fault is obviously segmented vertically.It develops unitary structure(simple fault plane)in shallow layers,binary structure(induced fracture zone in hanging wall and sliding fracture zone in footwall)in middle,layers and ternary structure(induced fracture zone in hanging wall and sliding fracture zone in middle,and induced fracture zone in footwall)in deep layers.Because the induced fracture zone is a high porosity and permeability zone,and the sliding fracture zone is a low porosity and ultra-low permeability zone,the late fault in middle layers has the character of"transporting while sealing".The late fault can transport hydrocarbon by its induced fracture zone in the side of the hanging wall and seal hydrocarbon by its sliding fracture zone in the side of the footwall.In deep layers,the late fault has the character of"dual-transportation",induced fracture zones in both sides of hanging wall and footwall can transport hydrocarbon.The early fault that only developed in the deep layers is presumed to be unitary structure,which plays a completely sealing role in the process of hydrocarbon migration and accumulation due to inactivity during the hydrocarbon filling period.Controlled by hydrocarbon source,early/late faults,sand bodies and traps,two reservoir-forming models of"inverted L"and"stereo-spiral"can be proposed in middle layers,while two reservoir-forming models of"cross fault"and"lateral fault sealing"are developed in the deep layers of Zhu I Depression.
文摘Conditions in rat and turtle small intestine tissue where glucose and glycine transport is inhibited while glucose-induced Na+ transport is preserved are described. The generally accepted model for the Na+-dependent transporter (а single channel for the Na+ and nutrient) does not account for the data obtained from the analysis of the interaction between the transport of glucose, glycine, and Na+ at different temperatures and the effect of inhibitors оn these рroсеssеs. The phenomenon of temperature uncoupling of Na+ and nutrient transport саn best bе described bу а two-pathway model with а gate mechanism. According to this model, the Na+-dependent transporter has at least two pathways: оnе for Na+ and another for nutrients. The model рrovidеs for the passage of Na+ in both directions along а channel opened bу glucose. Experiments are carried out using the addition of glucose and glycine on backgrounds of glycine and glucose, respectively. It has been hypothesized that when all three transporters (for Na+, glucose and glycine) are unite in a single structure, then there should be “competitive relations” between short-circuit current changes on glycine and glucose for sodium ions passing through its transporter.
基金Project supported by the National Basic Research Program of China(Grant No.2010CB934101)the National Natural Science Foundation of China(Grant No.11174161)the International S&T Cooperation Program of China(Grant No.2011DFA52870)
文摘A theoretical approach based on differential radiative transport is proposed to quantitatively analyze the self- absorption and reemission effects on the emission spectrum for right angle excitation-detection photoluminescence mea- surements, and the wavelength dependence of the reemission effect is taken into account. Simulations and experiments are performed using rhodamine 6G solutions in ethanol as model samples. It is shown that the self-absorption effect is the dominant effect on the detected spectrum by inducing pseudo red-shift and reducing total intensity; whereas the reemission effect partly compensates for signal decrease and also results in an apparent signal gain at the wavelengths without ab- sorption. Both effects decrease with the decrease in the sample concentration and the propagation distance of the emission light inside the sample. We therefore suggest that diluted solutions are required for accurate photoluminescence spectrum measurements and photoluminescence-based measurements.
文摘The research aimed to evaluate the absorption and removal capacity of Cu, Pb, Fe and Zn from Scirpus californicus for potential use in the remediation of polluted aquatic environments. Initially, Scirpus californicus plants were conditioned in 1.5 liters of 10 ppm Cu solution at a pH of 2.3 as well as Pb, Fe and Zn. Subsequently, the concentration of heavy metals in the root-rhizome, submerged stem and aerial stem was determined;the solution and pH were also analyzed. The greatest capacity of absorption and accumulation occurred in the root-rhizome reaching values for Cu of 491.84, Pb of 739.43, Zn of 830.71 and Fe of 2624.72 mg/kg dry followed by the submerged stem and low values for the aerial stem. The removal efficiency of Cu from the solution was 52.10%, Pb 53.50%, Fe 48.00% and Zn 50.20%. It is concluded that the contact time has a significant effect on the absorption and removal capacity of the metals under study.
基金supported by the China Agriculture Research System-Green Manure(CARS-22)the Innovation Program of Chinese Academy of Agricultural Sciences。
文摘Astragalus sinicus is a commonly used legume green manure that fixes atmospheric N2 and accumulates mineral nutrients and organic substances that are beneficial to soils and subsequent crops.However,little is known about genotypic variation in,and molecular mechanisms of,Pi(phosphate)uptake and storage in A.sinicus.We recorded the morphological responses of six A.sinicus cultivars from four regions of China to external Pi application and measured their Pi accumulation.We identified full-length transcripts of Pi-signaling and Pi-homeostasis regulators by sequencing and measured the expression level of these genes by qRT-PCR.The major components in Pi signaling and Pi homeostasis were largely conserved between A.sinicus and the model species rice and Arabidopsis.Different A.sinicus varieties responded differently to low-phosphorus(P)stress,and their Pi accumulation was positively correlated with the expression of vacuolar Pi influx gene(SYG1/PHO81/XPR1-MAJOR FACILITATOR SUPERFAMILY(SPX-MFS)-TYPE PROTEIN)AsSPXMFS2 and negatively correlated with the expression of the vacuolar Pi efflux gene(VACUOLAR Pi EFFLUX TRANSPORTER)AsVPE1.We identified key Pi-signaling and Pihomeostasis regulators in A.sinicus.The expression of vacuolar Pi transporter genes could be used as an index to select A.sinicus accessions with high Pi accumulation.