The wide pillars are generally popular due to the high productivity and efficiency in Northwest China.The distribution of lateral abutment pressure in coal pillars is important for mining safety.To reveal the effect o...The wide pillars are generally popular due to the high productivity and efficiency in Northwest China.The distribution of lateral abutment pressure in coal pillars is important for mining safety.To reveal the effect of the first mining on the lateral abutment pressure distribution and evolution in wide pillars,an in-situ experiment,theoretical analysis and numerical simulation were performed.First,the field monitoring of lateral abutment pressure was conducted from the perspective of time and space in the Chahasu Coal Mine,Huangling No.2 Coal Mine and Lingdong Coal Mine during the first mining.Based on the field monitoring stress,a theoretical model was proposed to reveal the lateral abutment pressure distribution.The methodology was demonstrated through a case study.Aiming at the distribution mechanism,a numerical experiment was conducted through the finite-discrete element method(FDEM).Last,field observations of borehole fractures were performed to further study the damage distribution.In addition,two types of lateral abutment pressure evolution with mining advance were discussed.Suggestions on the stress monitoring layout were proposed as well.The results could provide foundations for strata control and disaster prevention in wide pillars in underground coal mines.展开更多
Given the 7123 working face in the Qidong Coal Mine of the Wanbei Mining Group, nine dynamic roof monitors were installed in the crossheading to measure the amount and velocity of roof convergence in different positio...Given the 7123 working face in the Qidong Coal Mine of the Wanbei Mining Group, nine dynamic roof monitors were installed in the crossheading to measure the amount and velocity of roof convergence in different positions and at different times and three steel bored stress sensors were installed in the return airway to measure rock stress at depth. On the basis of this arrange- ment, the rule of change of the distribution of the side abutment pressure with the advance of the working face and movement of overlying strata was studied. The rule of change and the stability of rock stress at depth were measured. Secondly, the affected area and stability time of the side abutment pressure were also studied. The results show that: 1) During working, the face advanced distance was from 157 m to 99 m, the process was not effected by mining induced pressure. When the distance was 82 m, the posi- tion of peak stress was 5 m away from the coal wall. When the distance was 37 m, the position of peak stress away from the coal wall was about 15 m to 20 m and finally reached a steady state; 2) the time and the range of the peak of side rock pressure obtained from stress sensors were consistent with the results from the dynamic roof monitors; 3) the position of the peak pressure was 25 m away from the coal wall.展开更多
In order to obtain the distribution rules of abutment pressure around the 1151 (3) fully mechanized top-coal caving (FMTC) face of Xieqiao Colliery, the KSE-II-1 type bore-hole stress gauges were installed in the ...In order to obtain the distribution rules of abutment pressure around the 1151 (3) fully mechanized top-coal caving (FMTC) face of Xieqiao Colliery, the KSE-II-1 type bore-hole stress gauges were installed in the tailentry and headentry to measure the mining-induced stress. The distribution rules of the front and side abutment pressure were demonstrated. The results show that distribution rules of stress are obviously different in the vicinity of the face and entries. The peak value of abutment pressure in the protective coal pillar and face are located commonly in front of the working face along the strike, and they are located at the stress-decreased zone near the face. There is no stress peak value in the lateral coal mass beside the headentry in front of the face on the strike, and the peak value of abutment pressure appears at the rear area of the face. There are stress peak values both in the protective coal pillar and in the lateral coal mass beside the headentry to the dip.展开更多
In view of the three-dimensional dynamic abutment pressure,the influence of the far-field hard stratum(FHS)in deep,thick coal seams is indeterminant.Based on elastic foundation theory,a three-dimensional dynamic predi...In view of the three-dimensional dynamic abutment pressure,the influence of the far-field hard stratum(FHS)in deep,thick coal seams is indeterminant.Based on elastic foundation theory,a three-dimensional dynamic prediction model of the abutment pressure was established.Using this model,the dynamic change in the coal seam abutment pressure caused by the movement of the FHS was studied,and a method for determining the dynamic change range of the abutment pressure was developed.The results of the new prediction model of the abutment pressure are slightly higher than the measured values,with an error of 0.51%,which avoids the shortcomings of the results because the Winkler foundation model results are lower than the measured values and have an error of 9.98%.As time progresses,the abutment pressure and its distribution range are affected by the FHS movement,which has the characteristics of gradually increasing dynamic change until the FHS fractures.The peak value of the abutment pressure increases linearly with time,and the influence range increases with time following a power function with an exponent of less than 1.The influence range of the FHS movement on the abutment pressure ahead of the working face,behind the working face,and along the working face is 10 times,25 times,and 17 times the mining thickness,respectively.According to the actual geological parameters,the dynamic change range of the coal seam abutment pressure was determined by drawing an additional stress curve and by determining the threshold value.These research results are of great significance to the partition optimization of the roadway support design of deep,thick coal seams.展开更多
In order to study the distribution of lateral floor abutment pressure at a working face,we first used elasticity theory to establish a distribution model of lateral floor abutment pressure and then analysed its distri...In order to study the distribution of lateral floor abutment pressure at a working face,we first used elasticity theory to establish a distribution model of lateral floor abutment pressure and then analysed its distribution.Second,we established a three-dimensional numerical simulation model of the Haizi Coal Mine No.86 mining area by using FLAC^(3D)(ITASCA Consulting Group) software.We investigated the distribution of lateral floor abutment pressure of a stope,which indicated that the position of abutment pressure peak varies at different floor depths.We then determined the rational reinforcement range of a floor roadway,based on the conclusion reached earlier.Finally,we used our conclusions in support of the No.86 mining area crossing-roadway.The supported crossing-roadway remained stable when mining the upper workface,which validates the accuracy of our numerical simulation and provides a future reference for the support of span-roadways under similar conditions.展开更多
Based on field measurement, the relations was introduced between mining bepth and the peak value places of abutment pressures in long wall face of the deep colliery with caving method to handle goaf, and the reasons a...Based on field measurement, the relations was introduced between mining bepth and the peak value places of abutment pressures in long wall face of the deep colliery with caving method to handle goaf, and the reasons aod kinds of pressure bumps are analysed under the action of tbe moving and constant abutment pressures formed by the method of long wall caving or room and pillar mining, and the relative precautions were put foward to prevent the pressure bumps in deep mining.展开更多
The three-dimensional damage constitutive relationship of coal is established and distribution law of the abutment pressure of the integrated coal beside the road-in packing for gob-side entry retaining in fully-mecha...The three-dimensional damage constitutive relationship of coal is established and distribution law of the abutment pressure of the integrated coal beside the road-in packing for gob-side entry retaining in fully-mechanized caving face under the effect of given deformation of the main roof is analyzed by the damage mechanics theory. And the relationship between distribution of the abutment pressure and thickness of coal seam is explored. The presented result is of great theoretical significance and practical value to the study on stability control of the surrounding rock of road-in packing for gob-side entry retaining in fully-mechanized caving face.展开更多
Based on the engineering background of double-unit face mining under complicated geological conditions and the lagging fully-mechanized face surpassing the fore mechanized face of double-unit face in Zhou Yuanshan coa...Based on the engineering background of double-unit face mining under complicated geological conditions and the lagging fully-mechanized face surpassing the fore mechanized face of double-unit face in Zhou Yuanshan coal mine, strata-pressure behavior in the process was analyzed based on FLAC3D and on-site measurement. The results show that the stress concentration factor of superposition abutment pressure and the alternate distance of double-unit face are meeting gauss function, the relationship between the depth of stress concentration point and alternate distance also meets gaussian function. When the alternate distance is larger than 24 m, the superimposition of pilot support pressure in the double-unit face is weak. When the alternate distance is more than 12-15 m, the changes of the roof subsidence coefficient and the depth of stress con- centration point are stabilized; when the alternate distance is 3-6 m, the fore working face end is in the greatest impact area of superposition abutment pressure, this area should be avoided in determining the reasonable alternate distance.展开更多
According to the distribution of abutment stress in a stope,this research established the mechanical model of mining abutment pressure transmission in floor base on the theory of semi-infnite plate body in elasticity....According to the distribution of abutment stress in a stope,this research established the mechanical model of mining abutment pressure transmission in floor base on the theory of semi-infnite plate body in elasticity.This study takes the 762 working face of Haizi Coal Mine as a case in point,and analyzed the dynamic evolution law of seam floor stress during the mining process.With an organic combination of the mining floor stress and surrounding rock stress,the study obtained the change laws of the maximum principle stress and the minimum one for the floor roadway surrounding rock when mining the upper working face.Considering the non-constant pressure force state and the cracks revolution mechanisms of floor roadway surrounding rock,the research built the mechanical model of roadway stress.Simulation results verify the reliability of the above conclusions.Moreover,this model could provide the theoretical basis and technical support for controlling floor roadway surrounding rock.展开更多
Investigating the stress drop of abutment pressure is the key to a deep quantitative analysis of the discontinuous stress redistribution under mining.In the present study,uniaxial and triaxial compression tests are ca...Investigating the stress drop of abutment pressure is the key to a deep quantitative analysis of the discontinuous stress redistribution under mining.In the present study,uniaxial and triaxial compression tests are carried out separately to determine the bulk and shear moduli,the cohesion,and the internal friction angle of the coal samples.By extending the meaning of Mohr’s circle referring to yield stress instead of the maximum principal stress,a yield line is introduced to illustrate the stress drop of Mohr’s circle referring to yield stress instead of the maximum principal stress at the elastoplastic boundary.Furthermore,a theoretical solution of the stress drop as a function of the damage is proposed to investigate how the abutment pressure differs considering the yield line and failure line.In addition,applying the stress drop at the yield line in non-pillar mining,top coal mining,and protective coal mining shows that the damage has a nonlinearly positive influence on the stress drop.The results shows that the bulk modulus and internal friction angle have a more sensitive influence on the stress drop than do the shear modulus and cohesion.Finally,the stress drop is divided into a discontinuous stress drop at the yield line and a structural stress drop at the failure line.The stress drop is effective in describing the discontinuous stress redistribution and shows a clear difference in the movement direction of Mohr’s circle considering the unloading pressure.展开更多
An investigation was conducted on the overall burst-instability of isolated coal pillars by means of the possibility index diagnosis method(PIDM). First, the abutment pressure calculation model of the gob in side di...An investigation was conducted on the overall burst-instability of isolated coal pillars by means of the possibility index diagnosis method(PIDM). First, the abutment pressure calculation model of the gob in side direction was established to derive the abutment pressure distribution curve of the isolated coal pillar. Second, the overall burst-instability ratio of the isolated coal pillars was defined. Finally, the PIDM was utilized to judge the possibility of overall burst-instability and recoverability of isolated coal pillars.The results show that an overall burst-instability may occur due to a large gob width or a small pillar width. If the width of the isolated coal pillar is not large enough, the shallow coal seam will be damaged at first, and then the high abutment pressure will be transferred to the deep coal seam, which may cause an overall burst-instability accident. This approach can be adopted to design widths of gobs and isolated coal pillars and to evaluate whether an existing isolated coal pillar is recoverable in skip-mining mines.展开更多
In view of the stress concentration problem left by the joint coal seams mining since the reservation of the coal pillar, it was proposed that non-pillar mining technology be used in Dongrong No.2 coal mine. The numer...In view of the stress concentration problem left by the joint coal seams mining since the reservation of the coal pillar, it was proposed that non-pillar mining technology be used in Dongrong No.2 coal mine. The numerical simulation software FLAG2D was used to draw the relationship between surrounding rock deformation of roadway driving along next goaf and the size of the coal pillar, so the safety and suitable position of roadway was determined. The distribution of lateral abutment pressure was measured by using the ZYJ-30 drilling stress gauge in the coal wall. The conclusions of the numerical simulation were verified.展开更多
According to the influence of the combination of short-distance coal seam group on mining roadway, using numerical simulation software FLAG2D to draw the abutment pressure distribution ahead the working face and the a...According to the influence of the combination of short-distance coal seam group on mining roadway, using numerical simulation software FLAG2D to draw the abutment pressure distribution ahead the working face and the area of influence in fully-mechanized mining conditions, the variation rules of surrounding rock supporting pressure of floor roadway and the deformation rules were summarized. GYS-300 anchor dynamometer was used to measure the roadway surface displacement, and the conclusions of numerical simulation were verified.展开更多
At present,non-pillar entry protection in longwall mining is mainly achieved through either the gob-side entry retaining(GER)procedure or the gob-side entry driving(GED)procedure.The GER procedure leads to difficultie...At present,non-pillar entry protection in longwall mining is mainly achieved through either the gob-side entry retaining(GER)procedure or the gob-side entry driving(GED)procedure.The GER procedure leads to difficulties in maintaining the roadway in mining both the previous and current panels.A narrow coal pillar about 5-7 m must be left in the GED procedure;therefore,it causes permanent loss of some coal.The gob-side pre-backfill driving(GPD)procedure effectively removes the wasting of coal resources that exists in the GED procedure and finds an alternative way to handle the roadway maintenance problem that exists in the GER procedure.The FLAC^(3D) software was used to numerically investigate the stress and deformation distributions and failure of the rock mass surrounding the previous and current panel roadways during each stage of the GPD procedure which requires"twice excavation and mining".The results show that the stress distribution is slightly asymmetric around the previous panel roadway after the"primary excavation".The stronger and stiffer backfill compared to the coal turned out to be the main bearing body of the previous panel roadway during the"primary mining".The highest vertical stresses of 32.6 and 23.1 MPa,compared to the in-situ stress of 10.5 MPa,appeared in the backfill wall and coal seam,respectively.After the"primary mining",the peak vertical stress under the coal seam at the floor level was slightly higher(18.1 MPa)than that under the backfill(17.8 MPa).After the"secondary excavation",the peak vertical stress under the coal seam at the floor level was slightly lower(18.7 MPa)than that under the backfill(19.8 MPa);the maximum floor heave and maximum roof sag of the current panel roadway were 252.9 and 322.1 mm,respectively.During the"secondary mining",the stress distribution in the rock mass surrounding the current panel roadway was mainly affected by the superposition of the front abutment pressure from the current panel and the side abutment pressure from the previous panel.The floor heave of the current panel roadway reached a maximum of 321.8 mm at 5 m ahead of the working face;the roof sag increased to 828.4 mm at the working face.The peak abutment pressure appeared alternately in the backfill and the coal seam during the whole procedure of"twice excavation and mining"of the GPD procedure.The backfill provided strong bearing capacity during all stages of the GPD procedure and exhibited reliable support for the roadway.The results provide scientific insight for engineering practice of the GPD procedure.展开更多
Measuring the top coal movement and abutment pressure about Teaching ThirdMine that belonged to the National Energy Investment and Development.It shows that thetop coal's strong compression occurs 6 m in front of ...Measuring the top coal movement and abutment pressure about Teaching ThirdMine that belonged to the National Energy Investment and Development.It shows that thetop coal's strong compression occurs 6 m in front of the face, the top coal is in front of sideabutment pressure concentration increase area at this time, and the top coal horizontaldisplacement increase rapidly.Also analyzed the top coal mechanical properties, and thetop coal under abutment pressure turned into block state.Finally, analyzed the top coalfailure mechanism and the structure of the mechanical model, and also made a theoreticalanalysis of the top coal's ultimate bearing capacity.展开更多
Since the middle of 1980’s, the longwall top-coal caving technique has beveloped rapidly in China. At present, it is one of the main approaches in the thick coal seam mining. This peper describes some mechanica probl...Since the middle of 1980’s, the longwall top-coal caving technique has beveloped rapidly in China. At present, it is one of the main approaches in the thick coal seam mining. This peper describes some mechanica problems of the caving technique, such as the damage and failure of the top-coal, the strata behaviors in the caving face, and the relation of the support and the surrounding rock. In order to employ the caving technique in a widespred scope, the problems such as the caving technique in the hard coal seam, the moving and running of the loose top-coal,and the upper floating of the gas etc. should be systematically systematically studied.展开更多
基金We gratefully acknowledge financial support from the National Natural Science Foundation of China(NSFC)(No.51704097)Science Foundation of Henan Polytechnic University(No.J2021–2)+1 种基金Key Research and Development Program of Henan Province,China(No.202102310244)“Science and Technology to Help the Economy 2020”Key Project(No.SQ2020YFF0426364).
文摘The wide pillars are generally popular due to the high productivity and efficiency in Northwest China.The distribution of lateral abutment pressure in coal pillars is important for mining safety.To reveal the effect of the first mining on the lateral abutment pressure distribution and evolution in wide pillars,an in-situ experiment,theoretical analysis and numerical simulation were performed.First,the field monitoring of lateral abutment pressure was conducted from the perspective of time and space in the Chahasu Coal Mine,Huangling No.2 Coal Mine and Lingdong Coal Mine during the first mining.Based on the field monitoring stress,a theoretical model was proposed to reveal the lateral abutment pressure distribution.The methodology was demonstrated through a case study.Aiming at the distribution mechanism,a numerical experiment was conducted through the finite-discrete element method(FDEM).Last,field observations of borehole fractures were performed to further study the damage distribution.In addition,two types of lateral abutment pressure evolution with mining advance were discussed.Suggestions on the stress monitoring layout were proposed as well.The results could provide foundations for strata control and disaster prevention in wide pillars in underground coal mines.
基金Projects 106084 supported by the Scientific and Technological Research of the Ministry of EducationBK2007701 by the Natural Science Foundation ofJiangsu Province 2006CB2022010 by the National Basic Research Program of China and the Qing-lan Project of Jiangsu Province
文摘Given the 7123 working face in the Qidong Coal Mine of the Wanbei Mining Group, nine dynamic roof monitors were installed in the crossheading to measure the amount and velocity of roof convergence in different positions and at different times and three steel bored stress sensors were installed in the return airway to measure rock stress at depth. On the basis of this arrange- ment, the rule of change of the distribution of the side abutment pressure with the advance of the working face and movement of overlying strata was studied. The rule of change and the stability of rock stress at depth were measured. Secondly, the affected area and stability time of the side abutment pressure were also studied. The results show that: 1) During working, the face advanced distance was from 157 m to 99 m, the process was not effected by mining induced pressure. When the distance was 82 m, the posi- tion of peak stress was 5 m away from the coal wall. When the distance was 37 m, the position of peak stress away from the coal wall was about 15 m to 20 m and finally reached a steady state; 2) the time and the range of the peak of side rock pressure obtained from stress sensors were consistent with the results from the dynamic roof monitors; 3) the position of the peak pressure was 25 m away from the coal wall.
基金Supported by the National Natural Science Foundation of Anhui Province (K J2010A090)
文摘In order to obtain the distribution rules of abutment pressure around the 1151 (3) fully mechanized top-coal caving (FMTC) face of Xieqiao Colliery, the KSE-II-1 type bore-hole stress gauges were installed in the tailentry and headentry to measure the mining-induced stress. The distribution rules of the front and side abutment pressure were demonstrated. The results show that distribution rules of stress are obviously different in the vicinity of the face and entries. The peak value of abutment pressure in the protective coal pillar and face are located commonly in front of the working face along the strike, and they are located at the stress-decreased zone near the face. There is no stress peak value in the lateral coal mass beside the headentry in front of the face on the strike, and the peak value of abutment pressure appears at the rear area of the face. There are stress peak values both in the protective coal pillar and in the lateral coal mass beside the headentry to the dip.
基金the National Natural Science Foundation of China[Grant No.U1810102].
文摘In view of the three-dimensional dynamic abutment pressure,the influence of the far-field hard stratum(FHS)in deep,thick coal seams is indeterminant.Based on elastic foundation theory,a three-dimensional dynamic prediction model of the abutment pressure was established.Using this model,the dynamic change in the coal seam abutment pressure caused by the movement of the FHS was studied,and a method for determining the dynamic change range of the abutment pressure was developed.The results of the new prediction model of the abutment pressure are slightly higher than the measured values,with an error of 0.51%,which avoids the shortcomings of the results because the Winkler foundation model results are lower than the measured values and have an error of 9.98%.As time progresses,the abutment pressure and its distribution range are affected by the FHS movement,which has the characteristics of gradually increasing dynamic change until the FHS fractures.The peak value of the abutment pressure increases linearly with time,and the influence range increases with time following a power function with an exponent of less than 1.The influence range of the FHS movement on the abutment pressure ahead of the working face,behind the working face,and along the working face is 10 times,25 times,and 17 times the mining thickness,respectively.According to the actual geological parameters,the dynamic change range of the coal seam abutment pressure was determined by drawing an additional stress curve and by determining the threshold value.These research results are of great significance to the partition optimization of the roadway support design of deep,thick coal seams.
基金supported by the National Basic Research Program of China(No.2010CB226805)the National Natural Science Foundation of China(Nos.50874103 and 50974115)+1 种基金the Natural Science Foundation of Jiangsu Province(No.KB2008135)the State Key Laboratory Fund(No.SKLGDUEK0905)
文摘In order to study the distribution of lateral floor abutment pressure at a working face,we first used elasticity theory to establish a distribution model of lateral floor abutment pressure and then analysed its distribution.Second,we established a three-dimensional numerical simulation model of the Haizi Coal Mine No.86 mining area by using FLAC^(3D)(ITASCA Consulting Group) software.We investigated the distribution of lateral floor abutment pressure of a stope,which indicated that the position of abutment pressure peak varies at different floor depths.We then determined the rational reinforcement range of a floor roadway,based on the conclusion reached earlier.Finally,we used our conclusions in support of the No.86 mining area crossing-roadway.The supported crossing-roadway remained stable when mining the upper workface,which validates the accuracy of our numerical simulation and provides a future reference for the support of span-roadways under similar conditions.
文摘Based on field measurement, the relations was introduced between mining bepth and the peak value places of abutment pressures in long wall face of the deep colliery with caving method to handle goaf, and the reasons aod kinds of pressure bumps are analysed under the action of tbe moving and constant abutment pressures formed by the method of long wall caving or room and pillar mining, and the relative precautions were put foward to prevent the pressure bumps in deep mining.
基金Supported by the National Science Foundation of China (50874042, 50674046)National Science Important Foundation (50634050)Hunan Science Foundation (06JJ50092)
文摘The three-dimensional damage constitutive relationship of coal is established and distribution law of the abutment pressure of the integrated coal beside the road-in packing for gob-side entry retaining in fully-mechanized caving face under the effect of given deformation of the main roof is analyzed by the damage mechanics theory. And the relationship between distribution of the abutment pressure and thickness of coal seam is explored. The presented result is of great theoretical significance and practical value to the study on stability control of the surrounding rock of road-in packing for gob-side entry retaining in fully-mechanized caving face.
基金Supported by the National Natural Science Foundation of China (50974059)
文摘Based on the engineering background of double-unit face mining under complicated geological conditions and the lagging fully-mechanized face surpassing the fore mechanized face of double-unit face in Zhou Yuanshan coal mine, strata-pressure behavior in the process was analyzed based on FLAC3D and on-site measurement. The results show that the stress concentration factor of superposition abutment pressure and the alternate distance of double-unit face are meeting gauss function, the relationship between the depth of stress concentration point and alternate distance also meets gaussian function. When the alternate distance is larger than 24 m, the superimposition of pilot support pressure in the double-unit face is weak. When the alternate distance is more than 12-15 m, the changes of the roof subsidence coefficient and the depth of stress con- centration point are stabilized; when the alternate distance is 3-6 m, the fore working face end is in the greatest impact area of superposition abutment pressure, this area should be avoided in determining the reasonable alternate distance.
基金supported by the National Natural Science Foundation of China(No.51074004)the Open Project of State Key Laboratory Breeding Base for Mining Disaster Prevention and Control of Shandong University of Science and Technology of China(No.MDPC2012KF06)+1 种基金the Natural Science Foundation of Anhui Province of China(No.11040606M102)Young Teachers Science Foundation of Anhui University of Science&Technology of China(No.2012QNZ14)
文摘According to the distribution of abutment stress in a stope,this research established the mechanical model of mining abutment pressure transmission in floor base on the theory of semi-infnite plate body in elasticity.This study takes the 762 working face of Haizi Coal Mine as a case in point,and analyzed the dynamic evolution law of seam floor stress during the mining process.With an organic combination of the mining floor stress and surrounding rock stress,the study obtained the change laws of the maximum principle stress and the minimum one for the floor roadway surrounding rock when mining the upper working face.Considering the non-constant pressure force state and the cracks revolution mechanisms of floor roadway surrounding rock,the research built the mechanical model of roadway stress.Simulation results verify the reliability of the above conclusions.Moreover,this model could provide the theoretical basis and technical support for controlling floor roadway surrounding rock.
基金The authors gratefully acknowledge the financial support received from the National Natural Science Foundation of China(Grant Nos.51504257 and 51674266)the State Key Research Development Program of China(Grant No.2016YFC0600704)+1 种基金the Fund of Yue Qi Outstanding Scholars(Grant No.2018A16)the Open Fund of the State Key Laboratory of Coal Mine Disaster Dynamics and Control at Chongqing University(Grant No.2011DA105287-FW201604).
文摘Investigating the stress drop of abutment pressure is the key to a deep quantitative analysis of the discontinuous stress redistribution under mining.In the present study,uniaxial and triaxial compression tests are carried out separately to determine the bulk and shear moduli,the cohesion,and the internal friction angle of the coal samples.By extending the meaning of Mohr’s circle referring to yield stress instead of the maximum principal stress,a yield line is introduced to illustrate the stress drop of Mohr’s circle referring to yield stress instead of the maximum principal stress at the elastoplastic boundary.Furthermore,a theoretical solution of the stress drop as a function of the damage is proposed to investigate how the abutment pressure differs considering the yield line and failure line.In addition,applying the stress drop at the yield line in non-pillar mining,top coal mining,and protective coal mining shows that the damage has a nonlinearly positive influence on the stress drop.The results shows that the bulk modulus and internal friction angle have a more sensitive influence on the stress drop than do the shear modulus and cohesion.Finally,the stress drop is divided into a discontinuous stress drop at the yield line and a structural stress drop at the failure line.The stress drop is effective in describing the discontinuous stress redistribution and shows a clear difference in the movement direction of Mohr’s circle considering the unloading pressure.
基金supported by The National Natural Science Foundation of China(Grant No.51427804)National Key Technology Support Program(Grant No.2012BAF14B00)Natural Science Foundation of Anhui Province(Grant Nos.1408085MKL92,1408085MKL93)
文摘An investigation was conducted on the overall burst-instability of isolated coal pillars by means of the possibility index diagnosis method(PIDM). First, the abutment pressure calculation model of the gob in side direction was established to derive the abutment pressure distribution curve of the isolated coal pillar. Second, the overall burst-instability ratio of the isolated coal pillars was defined. Finally, the PIDM was utilized to judge the possibility of overall burst-instability and recoverability of isolated coal pillars.The results show that an overall burst-instability may occur due to a large gob width or a small pillar width. If the width of the isolated coal pillar is not large enough, the shallow coal seam will be damaged at first, and then the high abutment pressure will be transferred to the deep coal seam, which may cause an overall burst-instability accident. This approach can be adopted to design widths of gobs and isolated coal pillars and to evaluate whether an existing isolated coal pillar is recoverable in skip-mining mines.
文摘In view of the stress concentration problem left by the joint coal seams mining since the reservation of the coal pillar, it was proposed that non-pillar mining technology be used in Dongrong No.2 coal mine. The numerical simulation software FLAG2D was used to draw the relationship between surrounding rock deformation of roadway driving along next goaf and the size of the coal pillar, so the safety and suitable position of roadway was determined. The distribution of lateral abutment pressure was measured by using the ZYJ-30 drilling stress gauge in the coal wall. The conclusions of the numerical simulation were verified.
文摘According to the influence of the combination of short-distance coal seam group on mining roadway, using numerical simulation software FLAG2D to draw the abutment pressure distribution ahead the working face and the area of influence in fully-mechanized mining conditions, the variation rules of surrounding rock supporting pressure of floor roadway and the deformation rules were summarized. GYS-300 anchor dynamometer was used to measure the roadway surface displacement, and the conclusions of numerical simulation were verified.
基金This research was supported by the National Natural Science Foundation of China(51604126,51974293)the Natural Science Foundation of Jiangsu Province(BK20180658),and the Distinguished Foreign Expert Talent Program funding from the Chinese Government and the Jiangxi Province.
文摘At present,non-pillar entry protection in longwall mining is mainly achieved through either the gob-side entry retaining(GER)procedure or the gob-side entry driving(GED)procedure.The GER procedure leads to difficulties in maintaining the roadway in mining both the previous and current panels.A narrow coal pillar about 5-7 m must be left in the GED procedure;therefore,it causes permanent loss of some coal.The gob-side pre-backfill driving(GPD)procedure effectively removes the wasting of coal resources that exists in the GED procedure and finds an alternative way to handle the roadway maintenance problem that exists in the GER procedure.The FLAC^(3D) software was used to numerically investigate the stress and deformation distributions and failure of the rock mass surrounding the previous and current panel roadways during each stage of the GPD procedure which requires"twice excavation and mining".The results show that the stress distribution is slightly asymmetric around the previous panel roadway after the"primary excavation".The stronger and stiffer backfill compared to the coal turned out to be the main bearing body of the previous panel roadway during the"primary mining".The highest vertical stresses of 32.6 and 23.1 MPa,compared to the in-situ stress of 10.5 MPa,appeared in the backfill wall and coal seam,respectively.After the"primary mining",the peak vertical stress under the coal seam at the floor level was slightly higher(18.1 MPa)than that under the backfill(17.8 MPa).After the"secondary excavation",the peak vertical stress under the coal seam at the floor level was slightly lower(18.7 MPa)than that under the backfill(19.8 MPa);the maximum floor heave and maximum roof sag of the current panel roadway were 252.9 and 322.1 mm,respectively.During the"secondary mining",the stress distribution in the rock mass surrounding the current panel roadway was mainly affected by the superposition of the front abutment pressure from the current panel and the side abutment pressure from the previous panel.The floor heave of the current panel roadway reached a maximum of 321.8 mm at 5 m ahead of the working face;the roof sag increased to 828.4 mm at the working face.The peak abutment pressure appeared alternately in the backfill and the coal seam during the whole procedure of"twice excavation and mining"of the GPD procedure.The backfill provided strong bearing capacity during all stages of the GPD procedure and exhibited reliable support for the roadway.The results provide scientific insight for engineering practice of the GPD procedure.
文摘Measuring the top coal movement and abutment pressure about Teaching ThirdMine that belonged to the National Energy Investment and Development.It shows that thetop coal's strong compression occurs 6 m in front of the face, the top coal is in front of sideabutment pressure concentration increase area at this time, and the top coal horizontaldisplacement increase rapidly.Also analyzed the top coal mechanical properties, and thetop coal under abutment pressure turned into block state.Finally, analyzed the top coalfailure mechanism and the structure of the mechanical model, and also made a theoreticalanalysis of the top coal's ultimate bearing capacity.
文摘Since the middle of 1980’s, the longwall top-coal caving technique has beveloped rapidly in China. At present, it is one of the main approaches in the thick coal seam mining. This peper describes some mechanica problems of the caving technique, such as the damage and failure of the top-coal, the strata behaviors in the caving face, and the relation of the support and the surrounding rock. In order to employ the caving technique in a widespred scope, the problems such as the caving technique in the hard coal seam, the moving and running of the loose top-coal,and the upper floating of the gas etc. should be systematically systematically studied.