期刊文献+
共找到10,758篇文章
< 1 2 250 >
每页显示 20 50 100
Computer vision-aided DEM study on the compaction characteristics of graded subgrade filler considering realistic coarse particle shapes 被引量:1
1
作者 Taifeng Li Kang Xie +2 位作者 Xiaobin Chen Zhixing Deng Qian Su 《Railway Engineering Science》 EI 2024年第2期194-210,共17页
The compaction quality of subgrade filler strongly affects subgrade settlement.The main objective of this research is to analyze the macro-and micro-mechanical compaction characteristics of subgrade filler based on th... The compaction quality of subgrade filler strongly affects subgrade settlement.The main objective of this research is to analyze the macro-and micro-mechanical compaction characteristics of subgrade filler based on the real shape of coarse particles.First,an improved Viola-Jones algorithm is employed to establish a digitalized 2D particle database for coarse particle shape evaluation and discrete modeling purposes of subgrade filler.Shape indexes of 2D subgrade filler are then computed and statistically analyzed.Finally,numerical simulations are performed to quantitatively investigate the effects of the aspect ratio(AR)and interparticle friction coefficient(μ)on the macro-and micro-mechanical compaction characteristics of subgrade filler based on the discrete element method(DEM).The results show that with the increasing AR,the coarse particles are narrower,leading to the increasing movement of fine particles during compaction,which indicates that it is difficult for slender coarse particles to inhibit the migration of fine particles.Moreover,the average displacement of particles is strongly influenced by the AR,indicating that their occlusion under power relies on particle shapes.The dis-placement and velocity of fine particles are much greater than those of the coarse particles,which shows that compaction is primarily a migration of fine particles.Under the cyclic load,the interparticle friction coefficientμhas little effect on the internal structure of the sample;under the quasi-static loads,however,the increase inμwill lead to a significant increase in the porosity of the sample.This study could not only provide a novel approach to investigate the compaction mechanism but also establish a new theoretical basis for the evaluation of intelligent subgrade compaction. 展开更多
关键词 subgrade filler particles Deep learning particle Shape analysis Particle library Compaction characteristics Discrete element method(DEM)
下载PDF
Effect of degree of saturation on stresses and pore water pressure in the subgrade layer caused by railway track loading
2
作者 Mohammed Y.Fattah Qutaiba G.Majeed Hassan H.Joni 《Railway Sciences》 2024年第4期413-436,共24页
Purpose-The experiments of this study investigated the effect of the subgrade degree of saturation on the value of the stresses generated on the surface and the middle(vertical and lateral stresses).The objectives of ... Purpose-The experiments of this study investigated the effect of the subgrade degree of saturation on the value of the stresses generated on the surface and the middle(vertical and lateral stresses).The objectives of this study can be identified by studying the effect of subgrade layer degree of saturation variation,load amplitude and load frequency on the transmitted stresses through the ballast layer to the subgrade layer and the stress distribution inside it and investigating the excess pore water pressure development in the clay layer in the case of a fully saturated subgrade layer and the change in matric suction in the case of an unsaturated subgrade layer.Design/methodology/approach-Thirty-six laboratory experiments were conducted using approximately half-scale replicas of real railways,with an iron box measuring 1.5×1.031.0 m.Inside the box,a 0.5 m thick layer of clay soil representing the base layer was built.Above it is a 0.2 m thick ballast layer made of crushed stone,and on top of that is a 0.8 m long rail line supported by three 0.9 m(0.1×0.1 m)slipper beams.The subgrade layer has been built at the following various saturation levels:100,80,70 and 60%.Experiments were conducted with various frequencies of 1,2 and 4 Hz with load amplitudes of 15,25 and 35 kN.Findings-The results of the study demonstrated that as the subgrade degree of saturation decreased from 100 to 60%,the ratio of stress in the lateral direction to stress in the vertical direction generated in the middle of the subgrade layer decreased as well.On average,this ratio changed from approximately 0.75 to approximately 0.65.Originality/value-The study discovered that as the test proceeded and the number of cycles increased,the value of negative water pressure(matric suction)in the case of unsaturated subgrade soils declined.The frequency of loads had no bearing on the ratio of decline in matric suction values,which was greater under a larger load amplitude than a lower one.As the test progressed(as the number of cycles increased),the matric suction dropped.For larger load amplitudes,there is a greater shift in matric suction.The change in matric suction is greater at higher saturation levels than it is at lower saturation levels.Furthermore,it is seen that the load frequency value has no bearing on how the matric suction changes.For all load frequencies and subgrade layer saturation levels,the track panel settlement rises with the load amplitude.Higher load frequency and saturation levels have a greater impact. 展开更多
关键词 subgrade clay UNSATURATED TRACK Matric suction Stresses
下载PDF
Micro-destructive assessment of subgrade compaction quality using ultrasonic pulse velocity
3
作者 Xuefei Wang Xuping Dong +3 位作者 Xiangdong Li Jianmin Zhang Guowei Ma Jiale Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4782-4797,共16页
The ultrasonic pulse velocity(UPV)correlates significantly with the density and pore size of subgrade filling materials.This research conducts numerous Proctor and UPV tests to examine how moisture and rock content af... The ultrasonic pulse velocity(UPV)correlates significantly with the density and pore size of subgrade filling materials.This research conducts numerous Proctor and UPV tests to examine how moisture and rock content affect compaction quality.The study measures the changes in UPV across dry density and compaction characteristics.The compacted specimens exhibit distinct microstructures and mechanical properties along the dry and wet sides of the compaction curve,primarily influenced by internal water molecules.The maximum dry density exhibits a positive correlation with the rock content,while the optimal moisture content demonstrates an inverse relationship.As the rock content increases,the relative error of UPV measurement rises.The UPV follows a hump-shaped pattern with the initial moisture content.Three intelligent models are established to forecast dry density.The measure of UPV and PSO-BP-NN model quickly assesses compaction quality. 展开更多
关键词 subgrade Compaction quality Ultrasonic pulse velocity(UPV) Intelligent model Proctor test Micro-destructive evaluation
下载PDF
The effect of seismic action on stability of saline soil subgrade in cold region based on isothermal stratification method
4
作者 Jie Cheng Yu Zhang +2 位作者 Ying Ma Xuerui Chen Ning An 《Earthquake Research Advances》 CSCD 2024年第3期66-81,共16页
With the change of seasons, the shear strength of saline soil subgrade filler will change with the change of external temperature, which will aggravate the adverse effects of seismic on the subgrade. To explore the in... With the change of seasons, the shear strength of saline soil subgrade filler will change with the change of external temperature, which will aggravate the adverse effects of seismic on the subgrade. To explore the influence of seismic action on the stability of saline soil subgrade under the influence of temperature on the strength of saline soil subgrade filler, this paper first carried out saline soil shear tests at different temperatures to obtain the influence of temperature on the shear strength of saline soil. Then, the temperature field of the saline soil subgrade was simulated, and then based on the subgrade isothermal stratification model and FLAC3D, the displacement and acceleration amplification effects of seismic action on the shady slope, sunny slope and subgrade of saline soil subgrade in different months were analyzed. The following conclusions were finally drawn: under the action of seismic, In the process of the change of subgrade temperature of Qarhan-Golmud Expressway between 7.7°C and 27°C, the change of saline soil cohesion is the main factor affecting the stability of subgrade slope, and the maximum and minimum values of subgrade surface settlement appear in September and June of each year,respectively. In August, the differences of settlement between the shady slope and the sunny slope shoulder of the subgrade were the largest, and the acceleration of the shady slope and the sunny slope and the inside of the subgrade changed most significantly in the vertical direction. Special attention should be paid to the seismic early warning in the above key months;In the range from both sides of the shoulder to the centerline of the roadbed,the acceleration amplification effect starts to increase significantly from about 3m from the centerline of the roadbed to the centerline, so it is necessary to pay attention to the seismic design of this range. 展开更多
关键词 subgrade stability Saline soils Acceleration amplification effect Seismic design
下载PDF
Study on the Construction Technology of Subgrade Pavement in Road and Bridge Settlement Section
5
作者 Bing Liu 《Journal of Architectural Research and Development》 2024年第4期1-7,共7页
With the continuous development of China’s economy,the construction of roads and bridges work has put forward higher requirements.Due to various factors,the long-term use of roads and bridges will produce a settlemen... With the continuous development of China’s economy,the construction of roads and bridges work has put forward higher requirements.Due to various factors,the long-term use of roads and bridges will produce a settlement phenomenon.Therefore,it is crucial to address settlement issues during the construction of roads and bridges to ensure that the quality of subgrade and pavement construction meets national regulations.This paper introduces the harm of subgrade pavement subsidence,analyzes the causes of subgrade pavement deformation,and discusses the technical points of subgrade pavement construction,hoping to provide some reference for relevant practitioners. 展开更多
关键词 Road and bridge Settlement section subgrade and pavement Construction technology
下载PDF
Rapid testing and prediction of soil–water characteristic curve of subgrade soils considering stress state and degree of compaction 被引量:2
6
作者 Junhui Peng Huiren Hu Junhui Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第12期3305-3315,共11页
The subgrade soil is generally in saturated or unsaturated condition. To analyze complex thermo-hydro-mechanical-chemical (THMC) behaviors of subgrade, it is essential to determine the soil–water characteristic curve... The subgrade soil is generally in saturated or unsaturated condition. To analyze complex thermo-hydro-mechanical-chemical (THMC) behaviors of subgrade, it is essential to determine the soil–water characteristic curve (SWCC) that represents the relationship between matric suction and moisture content. In this study, a full-automatic rapid stress-dependent SWCC pressure-plate extractor was developed. Then, the influences of overburden stress and degree of compaction on the SWCC of subgrade soil such as high liquid limit silt (MH) and low liquid limit clay (CL) were analyzed. Accordingly, a new model taking into account the influences of overburden stress and degree of compaction based on the well-known Van Genuchten (VG) SWCC fitting model was presented and validated. The results show that with the increase of the degree of compaction and overburden stress, the saturated moisture content of subgrade soil decreases, while the air-entry value increases and the transition section curve becomes flat. The influences of the degree of compaction and overburden stress on the SWCC of MH is greater than that of CL. Meanwhile, there was a satisfactory agreement between the prediction and measurement, indicating a good performance of the new model for predicting the SWCC. 展开更多
关键词 subgrade soil Soil–water characteristic curve(SWCC) Overburden stress Degree of compaction Prediction mode
下载PDF
Stabilized effects of L-S cement-mixed batter pile composite foundation for existed warm frozen soil subgrade
7
作者 SUN Gao-chen YAO Gang +4 位作者 ZHANG Jian-ming LI Bo LI Jun-qi LIAN Wei-ping WEI Yi 《Journal of Mountain Science》 SCIE CSCD 2023年第2期542-556,共15页
In permafrost regions with warm frozen soil,subgrade thaw-collapse phenomenon commonly occurs,facing thaw collapse problems of the existed frozen soil subgrade,thus it is difficult to use traditional methods such as a... In permafrost regions with warm frozen soil,subgrade thaw-collapse phenomenon commonly occurs,facing thaw collapse problems of the existed frozen soil subgrade,thus it is difficult to use traditional methods such as active cooling and passive protection technology to stabilize the existed warm frozen soil subgrade.This study derives a novel stabilizer method,a long-short(L-S)cement-mixed batter pile composite foundation to stabilize the existed warm frozen soil subgrade.To solve the thawcollapse problems in warm frozen soil subgrade,high water content and large compressibility characteristics were compared between soft soil and warm frozen soils.Theoretical analysis of heat conduction and numerical simulation of finite element model were used to study the freeze–thaw process and evaluate the stabilized effects of the L-S cement-mixed batter piles on the warm frozen soil foundation of the Qinghai-Tibet Highway.Furthermore,the thaw process and mechanical properties of foundation and piles were analyzed by introducing the hydration heat factor in the thermodynamic control equation.The results indicate that the thawing displacement of the existed warm frozen soil subgrade was reduced owing to the“support”and“grasp”effects of the L-S cement-mixed batter piles on the surrounding soil.The composite ground formed by strengthening the warm frozen ground with batter piles could considerably improve the bearing capacity of the existed warm frozen ground,effectively restrain the deformation of the upper embankment,and improve the strength of the ground.The analysis can provide method for the construction design of cement mixing batter pile foundation in cold regions. 展开更多
关键词 Warm frozen soil subgrade Thaw collapse Thermal disturbance Long-short cementmixed batter pile Existed frozen soil subgrade
下载PDF
Physical modeling of long-term dynamic characteristics of the subgrade for medium-low-speed maglevs
8
作者 Minqi Dong Wubin Wang +4 位作者 Chengjin Wang Zhichao Huang Zhaofeng Ding Zhixing Deng Qian Su 《Railway Engineering Science》 2023年第3期293-308,共16页
To investigate the dynamic characteristics and long-term dynamic stability of the new subgrade structure of medium-low-speed(MLS)maglevs,cyclic vibration tests were performed under natural and rainfall conditions,and ... To investigate the dynamic characteristics and long-term dynamic stability of the new subgrade structure of medium-low-speed(MLS)maglevs,cyclic vibration tests were performed under natural and rainfall conditions,and the dynamic response of the subgrade structure was monitored.The dynamic response attenuation characteristics along the depth direction of the subgrade were compared,and the distribution characteristics of the dynamic stress on the surface of the subgrade along the longitudinal direction of the line were analyzed.The critical dynamic stress and cumulative deformation were used as indicators to evaluate the long-term dynamic stability of the subgrade.Results show that water has a certain effect on the dynamic characteristics of the subgrade,and the dynamic stress and acceleration increase with the water content.With the dowel steel structure set between the rail-bearing beams,stress concentration at the end of the loaded beam can be prevented,and the diffusion distance of the dynamic stress along the longitudinal direction increases.The dynamic stress measured in the subgrade bed range is less than 1/5 of the critical dynamic stress.The postconstruction settlement of the subgrade after similarity ratio conversion is 3.94 mm and 7.72 mm under natural and rainfall conditions,respectively,and both values are less than the 30 mm limit,indicating that the MLS maglev subgrade structure has good long-term dynamic stability. 展开更多
关键词 Medium-low-speed maglev subgrade Dynamic characteristics Long-term dynamic stability Model test
下载PDF
Current situation and development trend of design methods for subgrade structure of high speed railways
9
作者 Yangsheng Ye Degou Cai +3 位作者 Qianli Zhang Shaowei Wei Hongye Yan Lin Geng 《Railway Sciences》 2023年第3期289-309,共21页
Purpose–This method will become a new development trend in subgrade structure design for high speed railways.Design/methodology/approach–This paper summarizes the structural types and design methods of subgrade bed ... Purpose–This method will become a new development trend in subgrade structure design for high speed railways.Design/methodology/approach–This paper summarizes the structural types and design methods of subgrade bed for high speed railways in China,Japan,France,Germany,the United States and other countries based on the study and analysis of existing literature and combined with the research results and practices of high speed railway subgrade engineering at home and abroad.Findings–It is found that in foreign countries,the layered reinforced structure is generally adopted for the subgrade bed of high speed railways,and the unified double-layer or multi-layer structure is adopted for the surface layer of subgrade bed,while the simple structure is adopted in China;in foreign countries,different inspection parameters are adopted to evaluate the compaction state of fillers according to their respective understanding and practice,while in China,compaction coefficient,subsoil coefficient and dynamic deformation modulus are adopted for such evaluation;in foreign countries,the subgrade top deformation control method,the subgrade bottom deformation control method,the subsurface fill strength control method are mainly adopted in subgrade bed structure design of high speed railways,while in China,dynamic deformation control of subgrade surface and dynamic strain control of subgrade bed bottom layer is adopted in the design.However,the cumulative deformation of subgrade caused by train cyclic vibration load is not considered in the existing design methods.Originality/value–This paper introduces a new subgrade structure design method based on whole-process dynamics analysis that meets subgrade functional requirements and is established on the basis of the existing research at home and abroad on prediction methods for cumulative deformation of subgrade soil. 展开更多
关键词 High speed railway subgrade engineering subgrade bed structure Design method Existing research Development trend
下载PDF
Contributions of Engineering Geological Properties of Subgrade Soils to Premature Failure of Major Highways in Southwestern Nigeria:A Case Study of Akure-Ikere Ekiti Highway
10
作者 O.B.Ajiboye 《Journal of Physical Science and Application》 2023年第1期15-27,共13页
Geotechnical analyses were carried out to examine the contributions of engineering geological properties of subgrade soils to the failure of the Akure-Ikere Ekiti road,Southwestern Nigeria.Field observations revealed ... Geotechnical analyses were carried out to examine the contributions of engineering geological properties of subgrade soils to the failure of the Akure-Ikere Ekiti road,Southwestern Nigeria.Field observations revealed that the road is in a very poor state of serious deformation and disrepair as most parts of the road alignment have failed.The alignment of the studied road is predominantly underlain by Granite,Charnockites,and Migmatites.Laboratory tests results showed that the natural moisture content ranges from 10.98 to 21.4%,liquid limit from 22.8 to 47.7%,plastic limit from 19.2 to 24.6,plasticity index 3.6 to 26.3%.The grain size analysis revealed that the amount of fines ranges from 15.9 to 49%.Others are linear shrinkage,between 1.4 and 10%,free swell between 25 and 46%,maximum dry density from 1593 to 2016 kg/m,and CBR between 5 and 48%.The specific gravity ranges from 2.64 to 2.74.With reference to AASHTO classification,5% of the samples was classified as A-4,15% classified as A-2-4,40% classified as A-6,while 40% classified as A-7-6.The dominance of fair-to-good California bearing ratio,fair to good maximum dry density,high linear shrinkage and A-7-6,A-6,and A-2-4 soil groups have combined to give fair-to-good geotechnical properties to the studied soils.Generally,the fair to good geotechnical properties of soil of the road under study is an indication that the contribution of subgrade soil to the failure of the highway is negligible.The total breakdown of the road can be traced to substandard engineering specifications which are complemented by a poor drainage system. 展开更多
关键词 subgrade GEOTECHNICS failure COMPACTION Akure Ikere-Ekiti
下载PDF
Numerical analysis for permafrost temperature field in the short term of permafrost subgrade filling
11
作者 Yunjia Wang Qianli Zhang 《Railway Sciences》 2023年第2期179-196,共18页
Purpose-It is of great significance to study the influence of subgrade filling on permafrost temperature field in permafrost area for the smooth construction and safe operation of railway.Design/methodology/approach-T... Purpose-It is of great significance to study the influence of subgrade filling on permafrost temperature field in permafrost area for the smooth construction and safe operation of railway.Design/methodology/approach-The paper builds up the model for the hydrothermal coupling calculation of permafrost using finite element software COMSOL to study how permafrost temperature field changes in the short term after subgrade filling,on which basis it proposes the method of calculation for the concave distortion of freezing front in the subgrade-covered area.Findings-The results show that the freezing front below the subgrade center sinks due to the thermal effect of subgrade filling,which will trigger hydrothermal erosion in case of sufficient moisture inflows,leading to the thawing settlement or the cracking of the subgrade,etc.The heat output of soil will be hindered the most in case of July filling,in which case the sinking and the distortion of the freezing front is found to be the most severe,which the recovery of the permafrost temperature field,the slowest,constituting the most unfavorable working condition.The concave distortion of the freezing front in the subgrade area increases with the increase in temperature difference between the filler and ground surface,the subgrade height,the subgrade width and the volumetric thermal capacity of filler,while decreases with the increase of the thermal conductivity of filler.Therefore,the filler chose for engineering project shall be of small volumetric thermal capacity,low initial temperature and high thermal conductivity whenever possible.Originality/value-The concave distortion of the freezing front under different working conditions at different times after filling can be calculated using the method proposed. 展开更多
关键词 subgrade PERMAFROST Temperature field Hydrothermal coupling Numerical simulation
下载PDF
Dynamic behavior of new cutting subgrade structure of expensive soil under train loads coupling with service environment 被引量:16
12
作者 QIU Ming-ming YANG Guo-lin +3 位作者 SHEN Quan YANG Xiao WANG Gang LIN Yu-liang 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第4期875-890,共16页
Expansive soil is sensitive to dry and wet environment change. And the volume deformation and inflation pressure of expansive soil may induce to cause the deformation failure of roadbed or many other adverse effects. ... Expansive soil is sensitive to dry and wet environment change. And the volume deformation and inflation pressure of expansive soil may induce to cause the deformation failure of roadbed or many other adverse effects. Aimed at a high-speed railway engineering practice in the newly built Yun-Gui high-speed railway expansive soil section in China, indoor vibration test on a full-scaled new cutting subgrade model is carried out. Based on the established track-subgrade-foundation of expansive soil system dynamic model test platform, dynamic behavior of new cutting subgrade structure under train loads coupling with extreme service environment(dry, raining, and groundwater level rising) is analyzed comparatively. The results show that the subgrade dynamic response is significantly influenced by service conditions and the dynamic response of subgrade gradually becomes stable with the increasing vibration times under various service environment conditions. The vertical dynamic soil stress is related with the depth in an approximate exponential function, and the curves of vertical dynamic soil stress present a "Z" shape distribution along transverse distance. The peak value of dynamic soil stress appears below the rail, and it increases more obviously near the roadbed surface. However, the peak value of dynamic soil stress is little affected outside 5.0 m of center line. The vibration velocity and acceleration are in a quadratic curve with an increase in depth, and the raining and groundwater level rising increase both the vibration velocity and the acceleration. The vertical deformations at different depths are differently affected by service environment in roadbed. The deformation of roadbed increases sharply when the water gets in the foundation of expansive soil, and more than 60% of the total deformation of roadbed occurs in expansive soil foundation. The laid waterproofing and drainage structure layer, which weakens the dynamic stress and improves the track regularity, presents a positive effect on the control deformation of roadbed surface. An improved empirical formula is then proposed to predict the dynamic stress of ballasted tracks subgrade of expansive soil. 展开更多
关键词 high-speed RAILWAY FULL-SCALE model testing dynamic response expansive SOIL service environment NEW subgrade structure
下载PDF
Application of New-type Soil Stabilizer Q2 in Subgrade Construction 被引量:1
13
作者 田鹏 唐存莲 +1 位作者 陈强 卢惠芳 《Agricultural Science & Technology》 CAS 2015年第2期384-390,共7页
The research analyzed characters of soil stabilizer and detailed the solidification mechanism.Furthermore,new type soil stabilizer Q2 was used in a base of Beijing Vocational College of Agriculture and a solidified ro... The research analyzed characters of soil stabilizer and detailed the solidification mechanism.Furthermore,new type soil stabilizer Q2 was used in a base of Beijing Vocational College of Agriculture and a solidified road with length of 250 m,width of 4 m and thickness of 0.25 m were constructed.The road was tested with an agricultural truck and subgrade tolerance to freezing was tested also.It is suggested that new type soil stabilizer would reduce construction cost of road,protect environment,and reduce construction period,with high value of application. 展开更多
关键词 Soil stabilizer Q2 Construction of subgrade APPLICATION
下载PDF
Field experiment of subgrade vibration induced by passing train in a seasonally frozen region of Daqing 被引量:13
14
作者 Ling Xianzhang Zhang Feng +2 位作者 Zhu Zhanyuan Ding Lin Hu Qingli 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2009年第1期149-157,共9页
The vibration characteristics and attenuation of the subgrade caused by passing trains in a seasonally frozen region of Daqing, China are investigated. Three field experiments were conducted during different times thr... The vibration characteristics and attenuation of the subgrade caused by passing trains in a seasonally frozen region of Daqing, China are investigated. Three field experiments were conducted during different times through the year, in normal, freezing and thawing periods, respectively, and the influence of the season, train speed and train type, is described in this paper. The results show that: (1) the vertical component is the greatest among the three components of the measured vibration near the rail track, and as the distance to the railway track increases, the dominant vibration depends on the season. (2) Compared with the vibration in the normal period, the vertical and longitudinal vibrations increase while the lateral vibration decreases in the freezing period. However, in the thawing period, the vertical and longitudinal vibrations decrease, and the lateral vibration increases. (3) As train speeds increase, the subgrade vibration increases. (4) The vibration induced by a freight train is greater than by a passenger train. These observations provide a better understanding of the vibration and dynamic stability of the subgrade and may be useful in developing criteria for railway and building construction in cold regions. 展开更多
关键词 subgrade vibration passing train characteristic acceleration seasonally frozen regions Daqing area of China
下载PDF
Analysis of temperature field characteristics based on subgrade site measurements of Harbin-Qiqihar High-speed Railway in a deep seasonal frozen soil region 被引量:9
15
作者 ZuRun Yue BoWen Tai TieCheng Sun 《Research in Cold and Arid Regions》 CSCD 2015年第5期547-553,共7页
Recent years have seen a large number of high-speed railways built and will be built in seasonal frozen soil regions ot China. Although high-speed railways are characterized by being fast, comfortable and safe, higher... Recent years have seen a large number of high-speed railways built and will be built in seasonal frozen soil regions ot China. Although high-speed railways are characterized by being fast, comfortable and safe, higher standards for defor- mation of the railways' frozen subgrade are required. Meanwhile, changes in subgrade soil temperatures are the main factors affecting the deformation of frozen subgrade. Therefore, this paper selected typical test subgrade sections of the Harbin-Qiqihar Line, a special line for passenger transport built in the deep seasonal frozen soil regions of China, to monitor field temperatures. Also, the temperature changing laws of railways' subgrade in this region was analyzed by using testing data, the aim of which is to provide a technical support for future design and construction of buildings and structures in a deep seasonal frozen soil region. 展开更多
关键词 temperature field deep seasonal permafrost soils railways subgrade
下载PDF
Stability analysis of subgrade cave roofs in karst region 被引量:4
16
作者 蒋冲 赵明华 曹文贵 《Journal of Central South University》 SCIE EI CAS 2008年第S2期38-44,共7页
According to the engineering features of subgrade cave roof in karst region, the clamped beam model of subgrade cave roof in karst region was set up. Based on the catastrophe theory, the cusp catastrophe model for bea... According to the engineering features of subgrade cave roof in karst region, the clamped beam model of subgrade cave roof in karst region was set up. Based on the catastrophe theory, the cusp catastrophe model for bearing capacity of subgrade cave roof and safe thickness of subgrade cave roof in karst region was established. The necessary instability conditions of subgrade cave roof were deduced, and then the methods to determine safe thickness of cave roofs under piles and bearing capacity of subgrade cave roof were proposed. At the same time, a practical engineering project was applied to verifying this method, which has been proved successfu1ly. At last, the major factors that affect the stability on cave roof under pile in karst region were deeply discussed and some results in quality were acquired. 展开更多
关键词 pile foundation KARST subgrade CAVE roof CUSP CATASTROPHE model stability
下载PDF
Analysis of ground vibrations induced by high-speed train moving on pile-supported subgrade using three-dimensional FEM 被引量:9
17
作者 GAO Guang-yun BI Jun-wei +1 位作者 CHEN Qing-sheng CHEN Run-min 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第8期2455-2464,共10页
The pile-supported subgrade has been widely used in high-speed railway construction in China.To investigate the ground vibrations of such composite foundation subjected to moving loads induced by high-speed trains(HST... The pile-supported subgrade has been widely used in high-speed railway construction in China.To investigate the ground vibrations of such composite foundation subjected to moving loads induced by high-speed trains(HSTs),three-dimensional(3D)finite element method(FEM)models involving the pile,pile cap and cushion are established.Validation of the proposed model is conducted through comparison of model predictions with the field measurements.On this basis,ground vibrations generated by HSTs under different train speeds as well as the ground vibration attenuation with the distance away from the track centerline are investigated.In addition,the effects of piles and pile elastic modulus on ground vibrations are well studied.Results show that the pile-reinforcement of the subgrade could significantly contribute to the reduction of ground vibrations.In particular,the increase of elastic modulus of pile could lead to consistent reduction of ground vibrations.However,when the pile elastic modulus is beyond 10 GPa,this benefit of pile-reinforcement on vibration isolation can hardly be increased further. 展开更多
关键词 high-speed railway ground vibrations 3D FEM pile-supported subgrade pile elastic modulus
下载PDF
Analysis of railway subgrade frost heave deformation based on GPS 被引量:16
18
作者 Fuxun Ma Ruijie Xi Nan Xu 《Geodesy and Geodynamics》 2016年第2期143-147,共5页
In order to analyze the connection between the railway subgrade frost heave deformation and temperature variation, five GPS stations' data were used to monitor the deformation on a certain section of railway subgrade... In order to analyze the connection between the railway subgrade frost heave deformation and temperature variation, five GPS stations' data were used to monitor the deformation on a certain section of railway subgrade in northeast China. GAMIT software is used to process the data, providing daily solution, daytime solution and nighttime solution. Vertical trends of these five stations were analyzed to investigate frost heave effect on railway subgrade deformation. The results show that the temperature difference between daytime and night induces stations, significant vertical displacement, and the temperature difference between seasons causes settlement of station which appears linear trend. 展开更多
关键词 GPS Railway subgrade Frost heave Permafrost Deformation monitoring
下载PDF
Systematization of features and requirements for geological survey of railroad subgrades functioning in cold regions 被引量:2
19
作者 Aleksey Lanis Denis Razuvaev 《Research in Cold and Arid Regions》 CSCD 2017年第3期205-212,共8页
The operation of a railway track in cold regions results in the premature deformation of subgrade soils caused by significant temperature fluctuations and ecological imbalance.Identification and calculation of the tha... The operation of a railway track in cold regions results in the premature deformation of subgrade soils caused by significant temperature fluctuations and ecological imbalance.Identification and calculation of the thawing degree of permafrost soils,frost heaving of clays,and groundwater flooding require careful engineering and geological surveying.The paper describes the unique,long-standing experience of the university scientists connected with maintaining the Russian EastSiberian and Trans-Baikal Railways'facilities.Specific features of and requirements for the surveying,depending on the geological and climatic conditions,are identified. 展开更多
关键词 RAILROAD subgrade engineering-geological survey permafrost soils Baikal-Amur RAILROAD
下载PDF
Technological monitoring of subgrade construction on high-temperature permafrost 被引量:2
20
作者 Svyatoslav Ya.Lutskiy Taisia V.Shepitko Alexander M.Cherkasov 《Research in Cold and Arid Regions》 CSCD 2015年第4期316-322,共7页
Three stages of complex technological monitoring for the increase of high-temperature-permafrost soil bearing capacity are described. The feasibility of process monitoring to improve the targeted strength properties o... Three stages of complex technological monitoring for the increase of high-temperature-permafrost soil bearing capacity are described. The feasibility of process monitoring to improve the targeted strength properties of subgrade bases on frozen soils is demonstrated. The rationale for the necessity of predictive modeling of freeze-thaw actions during the subgrade construction period is provided. 展开更多
关键词 permafrost soils subgrade MONITORING bearing capacity complex technology
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部