期刊文献+
共找到60篇文章
< 1 2 3 >
每页显示 20 50 100
Predicting and validating the load-settlement behavior of large-scale geosynthetic-reinforced soil abutments using hybrid intelligent modeling 被引量:1
1
作者 Muhammad Nouman Amjad Raja Syed Taseer Abbas Jaffar +1 位作者 Abidhan Bardhan Sanjay Kumar Shukla 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第3期773-788,共16页
Settlement prediction of geosynthetic-reinforced soil(GRS)abutments under service loading conditions is an arduous and challenging task for practicing geotechnical/civil engineers.Hence,in this paper,a novel hybrid ar... Settlement prediction of geosynthetic-reinforced soil(GRS)abutments under service loading conditions is an arduous and challenging task for practicing geotechnical/civil engineers.Hence,in this paper,a novel hybrid artificial intelligence(AI)-based model was developed by the combination of artificial neural network(ANN)and Harris hawks’optimisation(HHO),that is,ANN-HHO,to predict the settlement of the GRS abutments.Five other robust intelligent models such as support vector regression(SVR),Gaussian process regression(GPR),relevance vector machine(RVM),sequential minimal optimisation regression(SMOR),and least-median square regression(LMSR)were constructed and compared to the ANN-HHO model.The predictive strength,relalibility and robustness of the model were evaluated based on rigorous statistical testing,ranking criteria,multi-criteria approach,uncertainity analysis and sensitivity analysis(SA).Moreover,the predictive veracity of the model was also substantiated against several large-scale independent experimental studies on GRS abutments reported in the scientific literature.The acquired findings demonstrated that the ANN-HHO model predicted the settlement of GRS abutments with reasonable accuracy and yielded superior performance in comparison to counterpart models.Therefore,it becomes one of predictive tools employed by geotechnical/civil engineers in preliminary decision-making when investigating the in-service performance of GRS abutments.Finally,the model has been converted into a simple mathematical formulation for easy hand calculations,and it is proved cost-effective and less time-consuming in comparison to experimental tests and numerical simulations. 展开更多
关键词 Geosynthetic-reinforced soil(GRS) abutments Settlement estimation Predictive modeling Artificial intelligence(AI) Artificial neural network(ANN)-Harris hawks’optimisation(HHO)
下载PDF
UHPFRC Cast-in-Situ Over-Lay of Bridge Abutments
2
作者 RomanŠafář Miloslav Kovač Robert Coufal 《Journal of Civil Engineering and Architecture》 2023年第10期479-483,共5页
Use of UHPFRC(ultra high performance fiber reinforced concrete)cast-in-situ over-lays for repairs and strengthening of bridge decks is already quite a widely used technology,while use of this method for strengthening ... Use of UHPFRC(ultra high performance fiber reinforced concrete)cast-in-situ over-lays for repairs and strengthening of bridge decks is already quite a widely used technology,while use of this method for strengthening of bridge supports is still much less often.This paper describes the first use of this technology for bridge abutments in the Czech Republic,and if we know well,also the first use of such a ribbed over-lay internationally. 展开更多
关键词 Strengthening of bridges bridge abutments bridge supports UHPFRC over-lay
下载PDF
Effect of trapezoidal collars as a scour countermeasure around wing-wall abutments 被引量:3
3
作者 Payam Khosravinia Amir Malekpour +1 位作者 Ali Hosseinzadehdalir Davod Farsadizadeh 《Water Science and Engineering》 EI CAS CSCD 2018年第1期53-60,共8页
Local scour around bridge abutments is a widespread problem that can result in structural failure. Collars can be used as a countermeasure to reduce the scour depth. In this study, the temporal scour development aroun... Local scour around bridge abutments is a widespread problem that can result in structural failure. Collars can be used as a countermeasure to reduce the scour depth. In this study, the temporal scour development around a wing-wall abutment was investigated with and without collars. The tests were carried out under clear-water conditions for different abutment lengths, with collars of different sizes placed at the bed level. When no collar was used in the experiments, 70% of the maximum scour depth occurred in less than 2 h. However, when a collar with a width greater than the length of the abutment was used, no scour was observed for up to 200 min from the beginning of the experiments. The results show that an increase in the collar width not only led to a lag time for the onset of scouring but also reduced the maximum scour depth. Moreover, an increased collar width led to a better performance in mitigating scouring around smaller abutments. Generally, the scour depth decreased by 9%-37% with different collar widths. 展开更多
关键词 Scour development Equilibrium scour depth Trapezoidal collar Wing-wall abutment Clear-water condition
下载PDF
Reliability and sensitivity analysis of wedge stability in the abutments of an arch dam using artificial neural network 被引量:1
4
作者 Hasan Mostafaei Farhad Behnamfar Mohammad Alembagheri 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第4期1019-1033,共15页
In this study,the seismic stability of arch dam abutments is investigated within the framework of the probabilistic method.A large concrete arch dam is considered with six wedges for each abutment.The seismic safety o... In this study,the seismic stability of arch dam abutments is investigated within the framework of the probabilistic method.A large concrete arch dam is considered with six wedges for each abutment.The seismic safety of the dam abutments is studied with quasi-static analysis for different hazard levels.The Londe limit equilibrium method is utilized to calculate the stability of the wedges in the abutments.Since the finite element method is time-consuming,the neural network is used as an alternative for calculating the wedge safety factor.For training the neural network,1000 random samples are generated and the dam response is calculated.The direction of applied acceleration is changed within 5-degree intervals to reveal the critical direction corresponding to the minimum safety factor.The Latin hypercube sampling(LHS)is employed for sample generation,and the safety level is determined with reliability analysis.Three sample numbers of 1000,2000 and 4000 are used to examine the average and standard deviation of the results.The global sensitivity analysis is used to identify the effects of random variables on the abutment stability.It is shown that friction,cohesion and uplift pressure have the most significant effects on the wedge stability variance. 展开更多
关键词 arch dam seismic reliability artificial neural network Latin hypercube sampling sensitivity analysis wedge abutment
下载PDF
Proportioning Criteria for Traditional and Innovative Extrados Techniques for the Strengthening of Barrel Vaulted Structures Subjected to Rocking of the Abutments
5
作者 Luca Ferrario Alessandra Marini +1 位作者 Paolo Riva Ezio Giuriani 《Journal of Civil Engineering and Architecture》 2010年第5期1-14,共14页
In this paper, the behavior of barrel-vaulted structures undergoing rocking of the abutments and the effectiveness of a few retrofit solutions are discussed. The comprehension of the structural performance of vault-ab... In this paper, the behavior of barrel-vaulted structures undergoing rocking of the abutments and the effectiveness of a few retrofit solutions are discussed. The comprehension of the structural performance of vault-abutment systems is fundamental for their seismic vulnerability assessment, and for the design of efficient strengthening techniques. In the paper, traditional techniques such as extrados thin concrete slab or masonry spandrel walls as well as an innovative solution with an extrados thin improved lime mortar slab reinforced by means of glass fiber mesh are considered. The different strengthening solutions are studied and compared on the basis of the results of non linear numerical analyses and by reference to a simplified analytical approach. Numerical and analytical models are validated through comparison with the results of a recent experimental study focusing on the behavior of vaulted masonry structures subjected to rocking of the abutments. The validated models can be used by engineers for the seismic vulnerability assessment of masonry vaulted structures as well as for the proportioning of possible extrados strengthening solutions, and will be used in the future to explore different structural system configurations. 展开更多
关键词 Abutment rocking vault abutment system extrados reinforcement.
下载PDF
Integrating the effect of abutments in estimating the average vertical stress of elastic hard rock pillars by combining numerical modelling and artificial neural networks
6
作者 Nevaid Dzimunya Yoshiaki Fujii Youhei Kawamura 《Underground Space》 SCIE EI CSCD 2023年第6期121-135,共15页
Estimating average vertical pillar stresses is a critical step in designing room-and-pillar mines.Several analytical methods can be used to estimate the vertical stresses acting on the pillars.However,the present anal... Estimating average vertical pillar stresses is a critical step in designing room-and-pillar mines.Several analytical methods can be used to estimate the vertical stresses acting on the pillars.However,the present analytical methods fail to adequately account for the influence of abutments on the distribution of vertical stresses,especially when applied to narrow panel widths and pillar layouts comprising evenly spaced barriers.In this study,a multi-layer perceptron neural network(MLPNN)was applied to predict the vertical loads of regular pillars more accurately.Hundreds of room-and-pillar mine layouts were modeled using a displacement discontinuity method(DDM),and a database of 2355 sampled pillar cases was compiled.The MLPNN was trained based on this database,and its prediction capabilities were further validated using simulations by a finite difference code(i.e.,FLAC3D).The model predictions and the FLAC3D simulations reasonably agreed with a regression coefficient of 0.99.The model was also adapted for mine cases with evenly spaced barrier pillars,and its application to a real case study mine has shown to provide accurate pillar stress estimations;hence,this model is suitable for practical use at mines.Even though the MLPNN model cannot be applied universally to all mine situations,it seems as a significant improvement over existing analytical techniques in terms of accounting for the influence of abutments on pillar stresses. 展开更多
关键词 Pillar stress abutments Multi-layer perceptron neural network Numerical simulation Room-and-pillar mine
原文传递
The integration of peri-implant soft tissues around zirconia abutments:Challenges and strategies 被引量:2
7
作者 Kai Tang Meng-Lin Luo +3 位作者 Wei Zhou Li-Na Niu Ji-Hua Chen Fu Wang 《Bioactive Materials》 SCIE CSCD 2023年第9期348-361,共14页
Stable soft tissue integration around the implant abutment attenuates pathogen penetration,protects underlying bone tissue,prevents peri-implantitis and is essential in maintaining long-term implant stability.The desi... Stable soft tissue integration around the implant abutment attenuates pathogen penetration,protects underlying bone tissue,prevents peri-implantitis and is essential in maintaining long-term implant stability.The desire for“metal free”and“aesthetic restoration”has favored zirconia over titanium abutments,especially for implant restorations in the anterior region and for patients with thin gingival biotype.Soft tissue attachment to the zirconia abutment surface remains a challenge.A comprehensive review of advances in zirconia surface treatment(micro-design)and structural design(macro-design)affecting soft tissue attachment is presented and strategies and research directions are discussed.Soft tissue models for abutment research are described.Guidelines for development of zirconia abutment surfaces that promote soft tissue integration and evidence-based references to inform clinical choice of abutment structure and postoperative maintenance are presented. 展开更多
关键词 ZIRCONIA Implant abutment Surface modification Soft tissue adhesion
原文传递
Recent Construction Technology Innovations and Practices for Large-Span Arch Bridges in China
8
作者 Jielian Zheng 《Engineering》 SCIE EI CAS CSCD 2024年第10期110-129,共20页
Arch bridges provide significant technical and economic benefits under suitable conditions.In particular,concrete-filled steel tubular(CFST)arch bridges and steel-reinforced concrete(SRC)arch bridges are two types of ... Arch bridges provide significant technical and economic benefits under suitable conditions.In particular,concrete-filled steel tubular(CFST)arch bridges and steel-reinforced concrete(SRC)arch bridges are two types of arch bridges that have gained great economic competitiveness and span growth potential due to advancements in construction technology,engineering materials,and construction equipment over the past 30 years.Under the leadership of the author,two record-breaking arch bridges—that is,the Pingnan Third Bridge(a CFST arch bridge),with a span of 560 m,and the Tian’e Longtan Bridge(an SRC arch bridge),with a span of 600 m—have been built in the past five years,embodying great technological breakthroughs in the construction of these two types of arch bridges.This paper takes these two arch bridges as examples to systematically summarize the latest technological innovations and practices in the construction of CFST arch bridges and SRC arch bridges in China.The technological innovations of CFST arch bridges include cable-stayed fastening-hanging cantilevered assembly methods,new in-tube concrete materials,in-tube concrete pouring techniques,a novel thrust abutment foundation for nonrocky terrain,and measures to reduce the quantity of temporary facilities.The technological innovations of SRC arch bridges involve arch skeleton stiffness selection,the development of encasing concrete materials,encasing concrete pouring,arch rib stress mitigation,and longitudinal reinforcement optimization.To conclude,future research focuses and development directions for these two types of arch bridges are proposed. 展开更多
关键词 Concrete-filled steel tubular arch bridges Steel-reinforced concrete arch bridges Cable-stayed fastening-hanging cantilevered assembly Non-rocky thrust abutment foundation Stiff skeleton Encasing concrete pouring Longitudinal reinforcement optimization
下载PDF
Experimental investigation and flow analysis of clear-water scour around pier and abutment in proximity 被引量:1
9
作者 Mohammad Saeed Fakhimjoo Abdollah Ardeshir +1 位作者 Kourosh Behzadian Hojat Karami 《Water Science and Engineering》 EI CAS CSCD 2023年第1期94-105,共12页
Local scour around bridge piers and abutments is one of the most significant causes of bridge failure.Despite a plethora of studies on scour around individual bridge piers or abutments,few studies have focused on the ... Local scour around bridge piers and abutments is one of the most significant causes of bridge failure.Despite a plethora of studies on scour around individual bridge piers or abutments,few studies have focused on the joint impact of a pier and an abutment in proximity to one another on scour.This study conducted laboratory experiments and flow analyses to examine the interaction of piers and abutments and their effect on clear-water scour.The experiments were conducted in a rectangular laboratory flume.They included 18 main tests(with a combination of different types of piers and abutments)and five control tests(with individual piers or abutments).Three pier types(a rectangular pier with a rounded edge,a group of three cylindrical piers,and a single cylindrical pier)and two abutment types(a wingewall abutment and a semicircular abutment)were used.An acoustic Doppler velocimeter was used to measure the three-dimensional flow velocity for analyses of streamline,velocity magnitude,vertical velocity,and bed shear stress.The results showed that the velocity near the pier and abutment increased by up to 80%.The maximum scour depth around the abutment increased by up to 19%.In contrast,the maximum scour depth around the pier increased significantly by up to l71%.The presence of the pier in the vicinity of the abutment led to an increase in the scour hole volume by up to 87%relative to the case with a solitary abutment.Empirical equations were also derived to accurately estimate the maximum scour depth at the pier adjacent to the abutment. 展开更多
关键词 ABUTMENT ADV Bridge scour Laboratory experiment Maximum scour depth PIER
下载PDF
Lateral abutment pressure distribution and evolution in wide pillars under the first mining effect 被引量:1
10
作者 Zhen Zhang Zhen Li +4 位作者 Gang Xu Xiaojin Gao Qianjin Liu Zhengjie Li Jiachen Liu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第3期309-322,共14页
The wide pillars are generally popular due to the high productivity and efficiency in Northwest China.The distribution of lateral abutment pressure in coal pillars is important for mining safety.To reveal the effect o... The wide pillars are generally popular due to the high productivity and efficiency in Northwest China.The distribution of lateral abutment pressure in coal pillars is important for mining safety.To reveal the effect of the first mining on the lateral abutment pressure distribution and evolution in wide pillars,an in-situ experiment,theoretical analysis and numerical simulation were performed.First,the field monitoring of lateral abutment pressure was conducted from the perspective of time and space in the Chahasu Coal Mine,Huangling No.2 Coal Mine and Lingdong Coal Mine during the first mining.Based on the field monitoring stress,a theoretical model was proposed to reveal the lateral abutment pressure distribution.The methodology was demonstrated through a case study.Aiming at the distribution mechanism,a numerical experiment was conducted through the finite-discrete element method(FDEM).Last,field observations of borehole fractures were performed to further study the damage distribution.In addition,two types of lateral abutment pressure evolution with mining advance were discussed.Suggestions on the stress monitoring layout were proposed as well.The results could provide foundations for strata control and disaster prevention in wide pillars in underground coal mines. 展开更多
关键词 Wide pillar Lateral abutment pressure Pillar stress First mining effect Field monitoring
下载PDF
Stabilizing subgrades of transport structures by injecting solidifying solutions in cold regions
11
作者 P.O.Lomov A.L.Lanis +1 位作者 D.A.Razuvaev M.G.Kavardakov 《Research in Cold and Arid Regions》 CSCD 2021年第5期357-365,共9页
Transport structures built throughout the period from 1960 to 1980 in permafrost regions based on the principle of permafrost preservation are subject to deformations.In many cases,the reason is a gradual change in te... Transport structures built throughout the period from 1960 to 1980 in permafrost regions based on the principle of permafrost preservation are subject to deformations.In many cases,the reason is a gradual change in temperature and their subgrade condition within the active zone due to the structures'technogenic impact.Design solutions for the fifty-year-old structures fail to ensure in all cases their reliable operation at the present time.The greatest danger to the reliable operation of railway lines in cold regions is uneven deformations of bridges,which are barrier places.Therefore,the solution to this problem is urgent especially due to the necessity of increase carrying capacity.The purpose of this study is to increase reliability of bridge operation in cold regions through strengthening the subgrade by reinforcement with injection of solidifying solutions.The problem of uneven deformations due to permafrost degradation is considered using the example of a railway bridge located in the northern line of the Krasnoyarsk railway.Deformations of the bridge abutments began immediately after the construction was completed and the bridge was open for traffic-since 1977.Permafrost degradation was developing more actively straight under the abutments due to higher thermal conductivity of the piles concrete.Notably,thawing intensity of frozen soils under the bridge abutments is uneven due to its orientation to the cardinal points.The analysis of archive materials and results of the geodetic survey made it possible to systematize the features of augmenting deformations of each abutment over time.The engineering-geological survey with drilling wells near the abutments ensured determination of soil characteristics,both in the frozen and thawed states.Thermometric wells were arranged to measure temperatures.The analysis and systematization of the data obtained allowed us to develop geotechnical models for each abutment of the bridge.The peculiarity of these models is allowance for changes in the strength and deformation characteristics of the soil calculated layers depending on changes in temperature and the soil condition.Thus,different calculated geological elements with the corresponding strength and deformation characteristics were identified in the soil layers of the same origin.The analysis of the systematized geodetic data allowed us to confirm adequacy of the developed geotechnical models.Studies carried out using geotechnical models made it possible to predict improvement of physical and mechanical characteristics of the subgrade to prevent further growth deformations of the bridge abutments.The method of reinforcement by injection is proposed.Injecting a solution under pressure leads to strengthening of weakened thawed soils and improving their physical and mechanical properties.This research theoretically substantiates and develops the geotechnical models of the reinforced pier footing of bridge abutments by injection of solidifying solutions.The models take into account the reinforcement parameters and elements for the case in question.The influence of reinforcement on the change in physical and mechanical properties of the soil mass is determined. 展开更多
关键词 reinforcement of soils injection of solidifying solution strengthening of pier footing soils geotechnical model bridge abutments deformations plastic frozen soil permafrost degradation
下载PDF
M5 Model Tree to Predict Temporal Evolution of Clear-Water Abutment Scour
12
作者 R. Biabani M. Meftah Halaghi Kh. Ghorbani 《Open Journal of Geology》 2016年第9期1045-1054,共10页
Scour is a natural phenomenon that is created by the rivers streams or the flood which brings about transferring or eroding of bed materials. To have accurate and safe erosion control structures design, maximum scour ... Scour is a natural phenomenon that is created by the rivers streams or the flood which brings about transferring or eroding of bed materials. To have accurate and safe erosion control structures design, maximum scour depth in downstream of the structures gains specific significance. In the current study, M5 model tree as remedy data mining approaches is suggested to estimate the scour depth around the abutments. To do this, Kayaturk laboratory data (2005), with different hydraulic conditions, are used. Then, the results of M5 model were also compared with genetic programming (GP) and pervious empirical results to investigate the applicability, ability, and accuracy of these procedures. To examine the accuracy of the results yielded from the M5 and GP procedures, two performance indicators (determination coefficient (R2) and root mean square error (RMSE)) were used. The comparison test of results clearly shows that the implementation of M5 technique sounds satisfactory regarding the performance indicators (R<sup>2</sup> = 0.944 and RMSE = 0.126) with less deviation from the numerical values. In addition, M5 tree model, by presenting relationships based on liner regression, has good capability to estimate the depth of scour abutment for engineers in practical terms. 展开更多
关键词 abutments Scour Depth M5 Model Tree Genetic Programming Model (GP)
下载PDF
Floor stress evolution laws and its effect on stability of floor roadway 被引量:20
13
作者 Zhang Hualei Cao Jianjun Tu Min 《International Journal of Mining Science and Technology》 SCIE EI 2013年第5期631-636,共6页
According to the distribution of abutment stress in a stope,this research established the mechanical model of mining abutment pressure transmission in floor base on the theory of semi-infnite plate body in elasticity.... According to the distribution of abutment stress in a stope,this research established the mechanical model of mining abutment pressure transmission in floor base on the theory of semi-infnite plate body in elasticity.This study takes the 762 working face of Haizi Coal Mine as a case in point,and analyzed the dynamic evolution law of seam floor stress during the mining process.With an organic combination of the mining floor stress and surrounding rock stress,the study obtained the change laws of the maximum principle stress and the minimum one for the floor roadway surrounding rock when mining the upper working face.Considering the non-constant pressure force state and the cracks revolution mechanisms of floor roadway surrounding rock,the research built the mechanical model of roadway stress.Simulation results verify the reliability of the above conclusions.Moreover,this model could provide the theoretical basis and technical support for controlling floor roadway surrounding rock. 展开更多
关键词 FLOOR Mining abutment pressure Floor roadway Cracks evolution mechanisms
下载PDF
Influence of cement-fly ash-gravel pile-supported approach embankment on abutment piles in soft ground 被引量:20
14
作者 D.Xiao G.L.Jiang +2 位作者 D.Liao Y.F.Hu X.F.Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 CSCD 2018年第5期977-985,共9页
Abutment piles in soft ground may be subjected to both vertical and horizontal soil movements resulting from approach embankment loads. To constrain the soil movements, the soft soil ground beneath the approach embank... Abutment piles in soft ground may be subjected to both vertical and horizontal soil movements resulting from approach embankment loads. To constrain the soil movements, the soft soil ground beneath the approach embankment is often improved using composite pile foundations, which aim at mitigating the bump induced by high-speed trains passing through the bridge. So far, there is limited literature on exploring the influence of the degree of ground improvement on abutment piles installed in soft soil grounds. In this paper, a series of three-dimensional (3D) centrifuge model tests was performed on an approach embankment over a silty clay deposit improved by cement-fly ash-gravel (CFG) piles combined with geogrid. Emphasis is placed on the effects of ground replacement ratio (m) on the responses of the abutment piles induced by embankment loads. Meanwhile, a numerical study was conducted with varying ground replacement ratio of the pile-reinforced grounds. Results show that the performance of the abutment piles is significantly improved when reinforcing the ground with CFG piles beneath the approach embankment. Interestingly, there is a threshold value of the replacement ratio of around 4.9% above which the effect of CFG pile foundations is limited. This implies that it is essential to optimize the ground improvement for having a cost-effective design while minimizing the risk of the bump at the end of bridge. 展开更多
关键词 Abutment pile Soft soilSoil movement Ground improvement Load transfer
下载PDF
Control mechanism and technique of floor heave with reinforcing solid coal side and floor corner in gob-side coal entry retaining 被引量:6
15
作者 Chen Yong Bai Jianbiao +3 位作者 Yan Shuai Xu Ying Wang Xiangyu Ma Shuqi 《International Journal of Mining Science and Technology》 SCIE EI 2012年第6期832-836,共5页
Floor heave is the most common convergence in gob-side entry retaining.The paper analyzes the form,process and characteristics of gob-side entry retaining with the comprehensive methods of theoretical analysis,numeric... Floor heave is the most common convergence in gob-side entry retaining.The paper analyzes the form,process and characteristics of gob-side entry retaining with the comprehensive methods of theoretical analysis,numerical simulation and the field trial.Research results present that bending and folding floor heave is the main factor in the stage of the first panel mining;squeezing and fluidity floor heave plays a great role in the stable stage of gob-side entry retaining;the combination of the former two factors affects mainly the stage of the second mining ahead;abutment pressure is a fundamental contribution to the serious floor heave of gob-side entry retaining,and sides corners of solid coal body are key part in the case of floor heave controlling of gob-side entry retaining.Floor heave of gob-side entry retaining can be significantly controlled by reinforcing sides and corners of solid coal body,and influence rules on the floor heave of gob side entry retaining of sides supporting strength and the bottom bolt orientation in solid coal side are obtained.Research results have been successfully applied in gob-side entry retaining of G20-F23070 face haulage roadway in #2 coal mine of Pingmei Group,and the field observation shows that the proposed technique is an effective way in controlling the floor heave of gob-side entry retaining. 展开更多
关键词 Gob-side ENTRY retaining ABUTMENT pressure Forms of FLOOR heave Reinforcing sides of solid COAL SIDE Bolt in a FLOOR CORNER
下载PDF
Abutment pressure distribution for longwall face mining through abandoned roadways 被引量:5
16
作者 Yang Li Mingxing Lei +4 位作者 Haosen Wang Cheng Li Weiwei Li Yang Tao Jingyi Wang 《International Journal of Mining Science and Technology》 EI CSCD 2019年第1期59-64,共6页
Abutment pressure distribution is different when a longwall panel is passing through the abandoned gate roads in a damaged coal seam. According to the geological condition of panel E13103 in Cuijiazhai Coal Mine in Ch... Abutment pressure distribution is different when a longwall panel is passing through the abandoned gate roads in a damaged coal seam. According to the geological condition of panel E13103 in Cuijiazhai Coal Mine in China, theoretical analysis and finite element numerical simulation were used to determine the front pressure distribution characteristics when the longwall face is 70, 50, 30, 20, 10, and 5 m from the abandoned roadways. The research results show that the influence range of abutment pressure is 40 to 45 m outby the face, and the peak value of front abutment pressure is related to the distance between the face and abandoned roadways. When the distance between the longwall face and abandoned roadways is reduced from 50 to 10 m, the front abutment pressure peak value kept increasing. When the distance is 10 m, it has reached the maximum. The peak value is located in 5 to 6 m outby the faceline. When the distance between the longwall face and abandoned roadways is reduced from 10 to 5 m, the front abutment pressure sharply decreases, the intact coal yields and is even in plastic state. The peak value transfers to the other side of the abandoned roadways. The research results provide a theoretical basis for determining the advance support distance of two roadways in the panel and the reinforcement for face stability when the longwall face is passing through the abandoned roadways. 展开更多
关键词 Abandoned roadways ABUTMENT PRESSURE THEORETICAL CALCULATION NUMERICAL simulation
下载PDF
Stress distribution rule of roadway affected by overhead mining in gently inclined coal seams group 被引量:5
17
作者 KANG Qin-rong1, 2, TANG Jian-xin1, 2, HU Hai1, 2, ZHANG Wei-zhong1, 3 1. College of Resource and Environmental Sciences, Chongqing University, Chongqing 400030, China 2. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030, China 3. School of Safety Science and Administration, Zhongnan University of Economics and Law, Wuhan 430074, China 《中国有色金属学会会刊:英文版》 CSCD 2011年第S3期529-535,共7页
In light of the severe deformation and destruction of the district raise tunnel in the mining area at the northern part of the Lubanshan colliery, by the theoretic analysis and numerical simulation, both the mining st... In light of the severe deformation and destruction of the district raise tunnel in the mining area at the northern part of the Lubanshan colliery, by the theoretic analysis and numerical simulation, both the mining stress distribution in seams group and the deformation and destruction mechanism of floor district raise were investigated. The results show that, at the maximum vertical distance of 40 m, the abutment stress has an influence on the recovery of 2# and 3# coal seam and 8# coal seam at distance of 30 m. As a result, the recovery of 8# is rather than those of 2# or 3# coal seam, which contributes to the deformation and destruction of the district raise surrounding rock. The major factors affecting the abutment stress include the mining depth, mining height, residual gob space, adjacent working faces and short spacing coal seam recovery. 展开更多
关键词 coal seams group STRESS distribution district RAISE SURROUNDING rock deformation and DESTRUCTION ABUTMENT STRESS
下载PDF
On the excavation-induced stress drop in damaged coal considering a coupled yield and failure criterion 被引量:5
18
作者 Dongjie Xue Jie Zhou +1 位作者 Yintong Liu Lie Gao 《International Journal of Coal Science & Technology》 EI 2020年第1期58-67,共10页
Investigating the stress drop of abutment pressure is the key to a deep quantitative analysis of the discontinuous stress redistribution under mining.In the present study,uniaxial and triaxial compression tests are ca... Investigating the stress drop of abutment pressure is the key to a deep quantitative analysis of the discontinuous stress redistribution under mining.In the present study,uniaxial and triaxial compression tests are carried out separately to determine the bulk and shear moduli,the cohesion,and the internal friction angle of the coal samples.By extending the meaning of Mohr’s circle referring to yield stress instead of the maximum principal stress,a yield line is introduced to illustrate the stress drop of Mohr’s circle referring to yield stress instead of the maximum principal stress at the elastoplastic boundary.Furthermore,a theoretical solution of the stress drop as a function of the damage is proposed to investigate how the abutment pressure differs considering the yield line and failure line.In addition,applying the stress drop at the yield line in non-pillar mining,top coal mining,and protective coal mining shows that the damage has a nonlinearly positive influence on the stress drop.The results shows that the bulk modulus and internal friction angle have a more sensitive influence on the stress drop than do the shear modulus and cohesion.Finally,the stress drop is divided into a discontinuous stress drop at the yield line and a structural stress drop at the failure line.The stress drop is effective in describing the discontinuous stress redistribution and shows a clear difference in the movement direction of Mohr’s circle considering the unloading pressure. 展开更多
关键词 Stress drop Abutment pressure Mohr's circle Yield line Failure line
下载PDF
Investigating different methods used for approximating pillar loads in longwall coal mines 被引量:4
19
作者 Deniz Tuncay a Ihsan Berk Tulu a Ted Klemetti 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第1期23-32,共10页
Accurately estimating load distributions and ground responses around underground openings play a significant role in the safety of the operations in underground mines.Adequately designing pillars and other support mea... Accurately estimating load distributions and ground responses around underground openings play a significant role in the safety of the operations in underground mines.Adequately designing pillars and other support measures relies highly on the accurate assessment of the loads that will be carried by them,as well as the load-bearing capacities of the supports.There are various methods that can be used to approximate mining-induced loads in stratified rock masses to be used in pillar design.The empirical methods are based on equations derived from large databases of various case studies.They are implemented in government approved design tools and are widely used.There are also analytical and numerical techniques used for more detailed analysis of the induced loads.In this study,two different longwall mines with different panel width-to-depth ratios are analyzed using different methods.The empirical method used in the analysis is the square-decay stress function that uses the abutment angle concept,implemented in pillar design software developed by the National Institute for Occupational Safety and Health(NIOSH).The first numerical method used in the analysis is a displacement-discontinuity(DD)variation of the boundary element method,LaModel,which utilizes the laminated overburden model.The second numerical method used in the analysis is Fast Lagrangian Analysis of Continua(FLAC)with the numerical modeling approach recently developed at West Virginia University which is based on the approach developed by NIOSH.The model includes the 2D slice of a cross-section along the width of the panel with the chain pillar system that also includes the different stratigraphic layers of the overburden.All three methods gave similar results for the shallow mine,both in terms of load percentages and distribution where the variation was more obvious for the deep cover mine.The FLAC3D model was observed to better capture the stress changes observed during the field measurements for both the shallow and deep cover cases.This study allowed us to see the shortcomings of each of these different methods.It was concluded that a numerical model which incorporates the site-specific geology would provide the most precise estimate for complex loading conditions. 展开更多
关键词 Abutment loads Numerical modeling LaModel FLAC3D Longwall coal mines
下载PDF
Numerical simulation of roof cavings in several Kuzbass mines using finite-difference continuum damage mechanics approach 被引量:3
20
作者 Mikhail Eremin Gabriel Esterhuizen Igor Smolin 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第2期157-166,共10页
An essential stage of mine design is an estimation of the steps of the first and periodic roof caving in longwall mines.Generally,this is carried out using the field experience and can be much enhanced by numerical si... An essential stage of mine design is an estimation of the steps of the first and periodic roof caving in longwall mines.Generally,this is carried out using the field experience and can be much enhanced by numerical simulation.In this work,the finite-difference method was applied coupled with the continuum damage mechanics(CDM)approach to simulate the stress-strain evolution of the rock mass with the underground opening during coal extraction.The steps and stages of roof caving were estimated relying on the numerical simulation data,and they were compared with the field data from several operating mines in the south of the Kuznetsk Basin,Russia.The dependence of the first roof caving step in simulation linearly correlates with field data.The results correspond to the actual roofs of longwall panels of the flat-dipping coal seams and the average rate of face advancement is approximately 5 m/day. 展开更多
关键词 LONGWALL mining Rock mass Underground OPENINGS ROOF CAVING ABUTMENT pressure Numerical simulation
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部