Settlement prediction of geosynthetic-reinforced soil(GRS)abutments under service loading conditions is an arduous and challenging task for practicing geotechnical/civil engineers.Hence,in this paper,a novel hybrid ar...Settlement prediction of geosynthetic-reinforced soil(GRS)abutments under service loading conditions is an arduous and challenging task for practicing geotechnical/civil engineers.Hence,in this paper,a novel hybrid artificial intelligence(AI)-based model was developed by the combination of artificial neural network(ANN)and Harris hawks’optimisation(HHO),that is,ANN-HHO,to predict the settlement of the GRS abutments.Five other robust intelligent models such as support vector regression(SVR),Gaussian process regression(GPR),relevance vector machine(RVM),sequential minimal optimisation regression(SMOR),and least-median square regression(LMSR)were constructed and compared to the ANN-HHO model.The predictive strength,relalibility and robustness of the model were evaluated based on rigorous statistical testing,ranking criteria,multi-criteria approach,uncertainity analysis and sensitivity analysis(SA).Moreover,the predictive veracity of the model was also substantiated against several large-scale independent experimental studies on GRS abutments reported in the scientific literature.The acquired findings demonstrated that the ANN-HHO model predicted the settlement of GRS abutments with reasonable accuracy and yielded superior performance in comparison to counterpart models.Therefore,it becomes one of predictive tools employed by geotechnical/civil engineers in preliminary decision-making when investigating the in-service performance of GRS abutments.Finally,the model has been converted into a simple mathematical formulation for easy hand calculations,and it is proved cost-effective and less time-consuming in comparison to experimental tests and numerical simulations.展开更多
Use of UHPFRC(ultra high performance fiber reinforced concrete)cast-in-situ over-lays for repairs and strengthening of bridge decks is already quite a widely used technology,while use of this method for strengthening ...Use of UHPFRC(ultra high performance fiber reinforced concrete)cast-in-situ over-lays for repairs and strengthening of bridge decks is already quite a widely used technology,while use of this method for strengthening of bridge supports is still much less often.This paper describes the first use of this technology for bridge abutments in the Czech Republic,and if we know well,also the first use of such a ribbed over-lay internationally.展开更多
Local scour around bridge abutments is a widespread problem that can result in structural failure. Collars can be used as a countermeasure to reduce the scour depth. In this study, the temporal scour development aroun...Local scour around bridge abutments is a widespread problem that can result in structural failure. Collars can be used as a countermeasure to reduce the scour depth. In this study, the temporal scour development around a wing-wall abutment was investigated with and without collars. The tests were carried out under clear-water conditions for different abutment lengths, with collars of different sizes placed at the bed level. When no collar was used in the experiments, 70% of the maximum scour depth occurred in less than 2 h. However, when a collar with a width greater than the length of the abutment was used, no scour was observed for up to 200 min from the beginning of the experiments. The results show that an increase in the collar width not only led to a lag time for the onset of scouring but also reduced the maximum scour depth. Moreover, an increased collar width led to a better performance in mitigating scouring around smaller abutments. Generally, the scour depth decreased by 9%-37% with different collar widths.展开更多
In this study,the seismic stability of arch dam abutments is investigated within the framework of the probabilistic method.A large concrete arch dam is considered with six wedges for each abutment.The seismic safety o...In this study,the seismic stability of arch dam abutments is investigated within the framework of the probabilistic method.A large concrete arch dam is considered with six wedges for each abutment.The seismic safety of the dam abutments is studied with quasi-static analysis for different hazard levels.The Londe limit equilibrium method is utilized to calculate the stability of the wedges in the abutments.Since the finite element method is time-consuming,the neural network is used as an alternative for calculating the wedge safety factor.For training the neural network,1000 random samples are generated and the dam response is calculated.The direction of applied acceleration is changed within 5-degree intervals to reveal the critical direction corresponding to the minimum safety factor.The Latin hypercube sampling(LHS)is employed for sample generation,and the safety level is determined with reliability analysis.Three sample numbers of 1000,2000 and 4000 are used to examine the average and standard deviation of the results.The global sensitivity analysis is used to identify the effects of random variables on the abutment stability.It is shown that friction,cohesion and uplift pressure have the most significant effects on the wedge stability variance.展开更多
In this paper, the behavior of barrel-vaulted structures undergoing rocking of the abutments and the effectiveness of a few retrofit solutions are discussed. The comprehension of the structural performance of vault-ab...In this paper, the behavior of barrel-vaulted structures undergoing rocking of the abutments and the effectiveness of a few retrofit solutions are discussed. The comprehension of the structural performance of vault-abutment systems is fundamental for their seismic vulnerability assessment, and for the design of efficient strengthening techniques. In the paper, traditional techniques such as extrados thin concrete slab or masonry spandrel walls as well as an innovative solution with an extrados thin improved lime mortar slab reinforced by means of glass fiber mesh are considered. The different strengthening solutions are studied and compared on the basis of the results of non linear numerical analyses and by reference to a simplified analytical approach. Numerical and analytical models are validated through comparison with the results of a recent experimental study focusing on the behavior of vaulted masonry structures subjected to rocking of the abutments. The validated models can be used by engineers for the seismic vulnerability assessment of masonry vaulted structures as well as for the proportioning of possible extrados strengthening solutions, and will be used in the future to explore different structural system configurations.展开更多
Estimating average vertical pillar stresses is a critical step in designing room-and-pillar mines.Several analytical methods can be used to estimate the vertical stresses acting on the pillars.However,the present anal...Estimating average vertical pillar stresses is a critical step in designing room-and-pillar mines.Several analytical methods can be used to estimate the vertical stresses acting on the pillars.However,the present analytical methods fail to adequately account for the influence of abutments on the distribution of vertical stresses,especially when applied to narrow panel widths and pillar layouts comprising evenly spaced barriers.In this study,a multi-layer perceptron neural network(MLPNN)was applied to predict the vertical loads of regular pillars more accurately.Hundreds of room-and-pillar mine layouts were modeled using a displacement discontinuity method(DDM),and a database of 2355 sampled pillar cases was compiled.The MLPNN was trained based on this database,and its prediction capabilities were further validated using simulations by a finite difference code(i.e.,FLAC3D).The model predictions and the FLAC3D simulations reasonably agreed with a regression coefficient of 0.99.The model was also adapted for mine cases with evenly spaced barrier pillars,and its application to a real case study mine has shown to provide accurate pillar stress estimations;hence,this model is suitable for practical use at mines.Even though the MLPNN model cannot be applied universally to all mine situations,it seems as a significant improvement over existing analytical techniques in terms of accounting for the influence of abutments on pillar stresses.展开更多
Stable soft tissue integration around the implant abutment attenuates pathogen penetration,protects underlying bone tissue,prevents peri-implantitis and is essential in maintaining long-term implant stability.The desi...Stable soft tissue integration around the implant abutment attenuates pathogen penetration,protects underlying bone tissue,prevents peri-implantitis and is essential in maintaining long-term implant stability.The desire for“metal free”and“aesthetic restoration”has favored zirconia over titanium abutments,especially for implant restorations in the anterior region and for patients with thin gingival biotype.Soft tissue attachment to the zirconia abutment surface remains a challenge.A comprehensive review of advances in zirconia surface treatment(micro-design)and structural design(macro-design)affecting soft tissue attachment is presented and strategies and research directions are discussed.Soft tissue models for abutment research are described.Guidelines for development of zirconia abutment surfaces that promote soft tissue integration and evidence-based references to inform clinical choice of abutment structure and postoperative maintenance are presented.展开更多
Arch bridges provide significant technical and economic benefits under suitable conditions.In particular,concrete-filled steel tubular(CFST)arch bridges and steel-reinforced concrete(SRC)arch bridges are two types of ...Arch bridges provide significant technical and economic benefits under suitable conditions.In particular,concrete-filled steel tubular(CFST)arch bridges and steel-reinforced concrete(SRC)arch bridges are two types of arch bridges that have gained great economic competitiveness and span growth potential due to advancements in construction technology,engineering materials,and construction equipment over the past 30 years.Under the leadership of the author,two record-breaking arch bridges—that is,the Pingnan Third Bridge(a CFST arch bridge),with a span of 560 m,and the Tian’e Longtan Bridge(an SRC arch bridge),with a span of 600 m—have been built in the past five years,embodying great technological breakthroughs in the construction of these two types of arch bridges.This paper takes these two arch bridges as examples to systematically summarize the latest technological innovations and practices in the construction of CFST arch bridges and SRC arch bridges in China.The technological innovations of CFST arch bridges include cable-stayed fastening-hanging cantilevered assembly methods,new in-tube concrete materials,in-tube concrete pouring techniques,a novel thrust abutment foundation for nonrocky terrain,and measures to reduce the quantity of temporary facilities.The technological innovations of SRC arch bridges involve arch skeleton stiffness selection,the development of encasing concrete materials,encasing concrete pouring,arch rib stress mitigation,and longitudinal reinforcement optimization.To conclude,future research focuses and development directions for these two types of arch bridges are proposed.展开更多
Local scour around bridge piers and abutments is one of the most significant causes of bridge failure.Despite a plethora of studies on scour around individual bridge piers or abutments,few studies have focused on the ...Local scour around bridge piers and abutments is one of the most significant causes of bridge failure.Despite a plethora of studies on scour around individual bridge piers or abutments,few studies have focused on the joint impact of a pier and an abutment in proximity to one another on scour.This study conducted laboratory experiments and flow analyses to examine the interaction of piers and abutments and their effect on clear-water scour.The experiments were conducted in a rectangular laboratory flume.They included 18 main tests(with a combination of different types of piers and abutments)and five control tests(with individual piers or abutments).Three pier types(a rectangular pier with a rounded edge,a group of three cylindrical piers,and a single cylindrical pier)and two abutment types(a wingewall abutment and a semicircular abutment)were used.An acoustic Doppler velocimeter was used to measure the three-dimensional flow velocity for analyses of streamline,velocity magnitude,vertical velocity,and bed shear stress.The results showed that the velocity near the pier and abutment increased by up to 80%.The maximum scour depth around the abutment increased by up to 19%.In contrast,the maximum scour depth around the pier increased significantly by up to l71%.The presence of the pier in the vicinity of the abutment led to an increase in the scour hole volume by up to 87%relative to the case with a solitary abutment.Empirical equations were also derived to accurately estimate the maximum scour depth at the pier adjacent to the abutment.展开更多
The wide pillars are generally popular due to the high productivity and efficiency in Northwest China.The distribution of lateral abutment pressure in coal pillars is important for mining safety.To reveal the effect o...The wide pillars are generally popular due to the high productivity and efficiency in Northwest China.The distribution of lateral abutment pressure in coal pillars is important for mining safety.To reveal the effect of the first mining on the lateral abutment pressure distribution and evolution in wide pillars,an in-situ experiment,theoretical analysis and numerical simulation were performed.First,the field monitoring of lateral abutment pressure was conducted from the perspective of time and space in the Chahasu Coal Mine,Huangling No.2 Coal Mine and Lingdong Coal Mine during the first mining.Based on the field monitoring stress,a theoretical model was proposed to reveal the lateral abutment pressure distribution.The methodology was demonstrated through a case study.Aiming at the distribution mechanism,a numerical experiment was conducted through the finite-discrete element method(FDEM).Last,field observations of borehole fractures were performed to further study the damage distribution.In addition,two types of lateral abutment pressure evolution with mining advance were discussed.Suggestions on the stress monitoring layout were proposed as well.The results could provide foundations for strata control and disaster prevention in wide pillars in underground coal mines.展开更多
Transport structures built throughout the period from 1960 to 1980 in permafrost regions based on the principle of permafrost preservation are subject to deformations.In many cases,the reason is a gradual change in te...Transport structures built throughout the period from 1960 to 1980 in permafrost regions based on the principle of permafrost preservation are subject to deformations.In many cases,the reason is a gradual change in temperature and their subgrade condition within the active zone due to the structures'technogenic impact.Design solutions for the fifty-year-old structures fail to ensure in all cases their reliable operation at the present time.The greatest danger to the reliable operation of railway lines in cold regions is uneven deformations of bridges,which are barrier places.Therefore,the solution to this problem is urgent especially due to the necessity of increase carrying capacity.The purpose of this study is to increase reliability of bridge operation in cold regions through strengthening the subgrade by reinforcement with injection of solidifying solutions.The problem of uneven deformations due to permafrost degradation is considered using the example of a railway bridge located in the northern line of the Krasnoyarsk railway.Deformations of the bridge abutments began immediately after the construction was completed and the bridge was open for traffic-since 1977.Permafrost degradation was developing more actively straight under the abutments due to higher thermal conductivity of the piles concrete.Notably,thawing intensity of frozen soils under the bridge abutments is uneven due to its orientation to the cardinal points.The analysis of archive materials and results of the geodetic survey made it possible to systematize the features of augmenting deformations of each abutment over time.The engineering-geological survey with drilling wells near the abutments ensured determination of soil characteristics,both in the frozen and thawed states.Thermometric wells were arranged to measure temperatures.The analysis and systematization of the data obtained allowed us to develop geotechnical models for each abutment of the bridge.The peculiarity of these models is allowance for changes in the strength and deformation characteristics of the soil calculated layers depending on changes in temperature and the soil condition.Thus,different calculated geological elements with the corresponding strength and deformation characteristics were identified in the soil layers of the same origin.The analysis of the systematized geodetic data allowed us to confirm adequacy of the developed geotechnical models.Studies carried out using geotechnical models made it possible to predict improvement of physical and mechanical characteristics of the subgrade to prevent further growth deformations of the bridge abutments.The method of reinforcement by injection is proposed.Injecting a solution under pressure leads to strengthening of weakened thawed soils and improving their physical and mechanical properties.This research theoretically substantiates and develops the geotechnical models of the reinforced pier footing of bridge abutments by injection of solidifying solutions.The models take into account the reinforcement parameters and elements for the case in question.The influence of reinforcement on the change in physical and mechanical properties of the soil mass is determined.展开更多
Scour is a natural phenomenon that is created by the rivers streams or the flood which brings about transferring or eroding of bed materials. To have accurate and safe erosion control structures design, maximum scour ...Scour is a natural phenomenon that is created by the rivers streams or the flood which brings about transferring or eroding of bed materials. To have accurate and safe erosion control structures design, maximum scour depth in downstream of the structures gains specific significance. In the current study, M5 model tree as remedy data mining approaches is suggested to estimate the scour depth around the abutments. To do this, Kayaturk laboratory data (2005), with different hydraulic conditions, are used. Then, the results of M5 model were also compared with genetic programming (GP) and pervious empirical results to investigate the applicability, ability, and accuracy of these procedures. To examine the accuracy of the results yielded from the M5 and GP procedures, two performance indicators (determination coefficient (R2) and root mean square error (RMSE)) were used. The comparison test of results clearly shows that the implementation of M5 technique sounds satisfactory regarding the performance indicators (R<sup>2</sup> = 0.944 and RMSE = 0.126) with less deviation from the numerical values. In addition, M5 tree model, by presenting relationships based on liner regression, has good capability to estimate the depth of scour abutment for engineers in practical terms.展开更多
According to the distribution of abutment stress in a stope,this research established the mechanical model of mining abutment pressure transmission in floor base on the theory of semi-infnite plate body in elasticity....According to the distribution of abutment stress in a stope,this research established the mechanical model of mining abutment pressure transmission in floor base on the theory of semi-infnite plate body in elasticity.This study takes the 762 working face of Haizi Coal Mine as a case in point,and analyzed the dynamic evolution law of seam floor stress during the mining process.With an organic combination of the mining floor stress and surrounding rock stress,the study obtained the change laws of the maximum principle stress and the minimum one for the floor roadway surrounding rock when mining the upper working face.Considering the non-constant pressure force state and the cracks revolution mechanisms of floor roadway surrounding rock,the research built the mechanical model of roadway stress.Simulation results verify the reliability of the above conclusions.Moreover,this model could provide the theoretical basis and technical support for controlling floor roadway surrounding rock.展开更多
Abutment piles in soft ground may be subjected to both vertical and horizontal soil movements resulting from approach embankment loads. To constrain the soil movements, the soft soil ground beneath the approach embank...Abutment piles in soft ground may be subjected to both vertical and horizontal soil movements resulting from approach embankment loads. To constrain the soil movements, the soft soil ground beneath the approach embankment is often improved using composite pile foundations, which aim at mitigating the bump induced by high-speed trains passing through the bridge. So far, there is limited literature on exploring the influence of the degree of ground improvement on abutment piles installed in soft soil grounds. In this paper, a series of three-dimensional (3D) centrifuge model tests was performed on an approach embankment over a silty clay deposit improved by cement-fly ash-gravel (CFG) piles combined with geogrid. Emphasis is placed on the effects of ground replacement ratio (m) on the responses of the abutment piles induced by embankment loads. Meanwhile, a numerical study was conducted with varying ground replacement ratio of the pile-reinforced grounds. Results show that the performance of the abutment piles is significantly improved when reinforcing the ground with CFG piles beneath the approach embankment. Interestingly, there is a threshold value of the replacement ratio of around 4.9% above which the effect of CFG pile foundations is limited. This implies that it is essential to optimize the ground improvement for having a cost-effective design while minimizing the risk of the bump at the end of bridge.展开更多
Floor heave is the most common convergence in gob-side entry retaining.The paper analyzes the form,process and characteristics of gob-side entry retaining with the comprehensive methods of theoretical analysis,numeric...Floor heave is the most common convergence in gob-side entry retaining.The paper analyzes the form,process and characteristics of gob-side entry retaining with the comprehensive methods of theoretical analysis,numerical simulation and the field trial.Research results present that bending and folding floor heave is the main factor in the stage of the first panel mining;squeezing and fluidity floor heave plays a great role in the stable stage of gob-side entry retaining;the combination of the former two factors affects mainly the stage of the second mining ahead;abutment pressure is a fundamental contribution to the serious floor heave of gob-side entry retaining,and sides corners of solid coal body are key part in the case of floor heave controlling of gob-side entry retaining.Floor heave of gob-side entry retaining can be significantly controlled by reinforcing sides and corners of solid coal body,and influence rules on the floor heave of gob side entry retaining of sides supporting strength and the bottom bolt orientation in solid coal side are obtained.Research results have been successfully applied in gob-side entry retaining of G20-F23070 face haulage roadway in #2 coal mine of Pingmei Group,and the field observation shows that the proposed technique is an effective way in controlling the floor heave of gob-side entry retaining.展开更多
Abutment pressure distribution is different when a longwall panel is passing through the abandoned gate roads in a damaged coal seam. According to the geological condition of panel E13103 in Cuijiazhai Coal Mine in Ch...Abutment pressure distribution is different when a longwall panel is passing through the abandoned gate roads in a damaged coal seam. According to the geological condition of panel E13103 in Cuijiazhai Coal Mine in China, theoretical analysis and finite element numerical simulation were used to determine the front pressure distribution characteristics when the longwall face is 70, 50, 30, 20, 10, and 5 m from the abandoned roadways. The research results show that the influence range of abutment pressure is 40 to 45 m outby the face, and the peak value of front abutment pressure is related to the distance between the face and abandoned roadways. When the distance between the longwall face and abandoned roadways is reduced from 50 to 10 m, the front abutment pressure peak value kept increasing. When the distance is 10 m, it has reached the maximum. The peak value is located in 5 to 6 m outby the faceline. When the distance between the longwall face and abandoned roadways is reduced from 10 to 5 m, the front abutment pressure sharply decreases, the intact coal yields and is even in plastic state. The peak value transfers to the other side of the abandoned roadways. The research results provide a theoretical basis for determining the advance support distance of two roadways in the panel and the reinforcement for face stability when the longwall face is passing through the abandoned roadways.展开更多
In light of the severe deformation and destruction of the district raise tunnel in the mining area at the northern part of the Lubanshan colliery, by the theoretic analysis and numerical simulation, both the mining st...In light of the severe deformation and destruction of the district raise tunnel in the mining area at the northern part of the Lubanshan colliery, by the theoretic analysis and numerical simulation, both the mining stress distribution in seams group and the deformation and destruction mechanism of floor district raise were investigated. The results show that, at the maximum vertical distance of 40 m, the abutment stress has an influence on the recovery of 2# and 3# coal seam and 8# coal seam at distance of 30 m. As a result, the recovery of 8# is rather than those of 2# or 3# coal seam, which contributes to the deformation and destruction of the district raise surrounding rock. The major factors affecting the abutment stress include the mining depth, mining height, residual gob space, adjacent working faces and short spacing coal seam recovery.展开更多
Investigating the stress drop of abutment pressure is the key to a deep quantitative analysis of the discontinuous stress redistribution under mining.In the present study,uniaxial and triaxial compression tests are ca...Investigating the stress drop of abutment pressure is the key to a deep quantitative analysis of the discontinuous stress redistribution under mining.In the present study,uniaxial and triaxial compression tests are carried out separately to determine the bulk and shear moduli,the cohesion,and the internal friction angle of the coal samples.By extending the meaning of Mohr’s circle referring to yield stress instead of the maximum principal stress,a yield line is introduced to illustrate the stress drop of Mohr’s circle referring to yield stress instead of the maximum principal stress at the elastoplastic boundary.Furthermore,a theoretical solution of the stress drop as a function of the damage is proposed to investigate how the abutment pressure differs considering the yield line and failure line.In addition,applying the stress drop at the yield line in non-pillar mining,top coal mining,and protective coal mining shows that the damage has a nonlinearly positive influence on the stress drop.The results shows that the bulk modulus and internal friction angle have a more sensitive influence on the stress drop than do the shear modulus and cohesion.Finally,the stress drop is divided into a discontinuous stress drop at the yield line and a structural stress drop at the failure line.The stress drop is effective in describing the discontinuous stress redistribution and shows a clear difference in the movement direction of Mohr’s circle considering the unloading pressure.展开更多
Accurately estimating load distributions and ground responses around underground openings play a significant role in the safety of the operations in underground mines.Adequately designing pillars and other support mea...Accurately estimating load distributions and ground responses around underground openings play a significant role in the safety of the operations in underground mines.Adequately designing pillars and other support measures relies highly on the accurate assessment of the loads that will be carried by them,as well as the load-bearing capacities of the supports.There are various methods that can be used to approximate mining-induced loads in stratified rock masses to be used in pillar design.The empirical methods are based on equations derived from large databases of various case studies.They are implemented in government approved design tools and are widely used.There are also analytical and numerical techniques used for more detailed analysis of the induced loads.In this study,two different longwall mines with different panel width-to-depth ratios are analyzed using different methods.The empirical method used in the analysis is the square-decay stress function that uses the abutment angle concept,implemented in pillar design software developed by the National Institute for Occupational Safety and Health(NIOSH).The first numerical method used in the analysis is a displacement-discontinuity(DD)variation of the boundary element method,LaModel,which utilizes the laminated overburden model.The second numerical method used in the analysis is Fast Lagrangian Analysis of Continua(FLAC)with the numerical modeling approach recently developed at West Virginia University which is based on the approach developed by NIOSH.The model includes the 2D slice of a cross-section along the width of the panel with the chain pillar system that also includes the different stratigraphic layers of the overburden.All three methods gave similar results for the shallow mine,both in terms of load percentages and distribution where the variation was more obvious for the deep cover mine.The FLAC3D model was observed to better capture the stress changes observed during the field measurements for both the shallow and deep cover cases.This study allowed us to see the shortcomings of each of these different methods.It was concluded that a numerical model which incorporates the site-specific geology would provide the most precise estimate for complex loading conditions.展开更多
An essential stage of mine design is an estimation of the steps of the first and periodic roof caving in longwall mines.Generally,this is carried out using the field experience and can be much enhanced by numerical si...An essential stage of mine design is an estimation of the steps of the first and periodic roof caving in longwall mines.Generally,this is carried out using the field experience and can be much enhanced by numerical simulation.In this work,the finite-difference method was applied coupled with the continuum damage mechanics(CDM)approach to simulate the stress-strain evolution of the rock mass with the underground opening during coal extraction.The steps and stages of roof caving were estimated relying on the numerical simulation data,and they were compared with the field data from several operating mines in the south of the Kuznetsk Basin,Russia.The dependence of the first roof caving step in simulation linearly correlates with field data.The results correspond to the actual roofs of longwall panels of the flat-dipping coal seams and the average rate of face advancement is approximately 5 m/day.展开更多
文摘Settlement prediction of geosynthetic-reinforced soil(GRS)abutments under service loading conditions is an arduous and challenging task for practicing geotechnical/civil engineers.Hence,in this paper,a novel hybrid artificial intelligence(AI)-based model was developed by the combination of artificial neural network(ANN)and Harris hawks’optimisation(HHO),that is,ANN-HHO,to predict the settlement of the GRS abutments.Five other robust intelligent models such as support vector regression(SVR),Gaussian process regression(GPR),relevance vector machine(RVM),sequential minimal optimisation regression(SMOR),and least-median square regression(LMSR)were constructed and compared to the ANN-HHO model.The predictive strength,relalibility and robustness of the model were evaluated based on rigorous statistical testing,ranking criteria,multi-criteria approach,uncertainity analysis and sensitivity analysis(SA).Moreover,the predictive veracity of the model was also substantiated against several large-scale independent experimental studies on GRS abutments reported in the scientific literature.The acquired findings demonstrated that the ANN-HHO model predicted the settlement of GRS abutments with reasonable accuracy and yielded superior performance in comparison to counterpart models.Therefore,it becomes one of predictive tools employed by geotechnical/civil engineers in preliminary decision-making when investigating the in-service performance of GRS abutments.Finally,the model has been converted into a simple mathematical formulation for easy hand calculations,and it is proved cost-effective and less time-consuming in comparison to experimental tests and numerical simulations.
基金For reconstruction of the bridge,results of research projects FV20472(TRIO)SGS20/108/OHK1/2T/11(CTU in Prague)were partly used.
文摘Use of UHPFRC(ultra high performance fiber reinforced concrete)cast-in-situ over-lays for repairs and strengthening of bridge decks is already quite a widely used technology,while use of this method for strengthening of bridge supports is still much less often.This paper describes the first use of this technology for bridge abutments in the Czech Republic,and if we know well,also the first use of such a ribbed over-lay internationally.
文摘Local scour around bridge abutments is a widespread problem that can result in structural failure. Collars can be used as a countermeasure to reduce the scour depth. In this study, the temporal scour development around a wing-wall abutment was investigated with and without collars. The tests were carried out under clear-water conditions for different abutment lengths, with collars of different sizes placed at the bed level. When no collar was used in the experiments, 70% of the maximum scour depth occurred in less than 2 h. However, when a collar with a width greater than the length of the abutment was used, no scour was observed for up to 200 min from the beginning of the experiments. The results show that an increase in the collar width not only led to a lag time for the onset of scouring but also reduced the maximum scour depth. Moreover, an increased collar width led to a better performance in mitigating scouring around smaller abutments. Generally, the scour depth decreased by 9%-37% with different collar widths.
文摘In this study,the seismic stability of arch dam abutments is investigated within the framework of the probabilistic method.A large concrete arch dam is considered with six wedges for each abutment.The seismic safety of the dam abutments is studied with quasi-static analysis for different hazard levels.The Londe limit equilibrium method is utilized to calculate the stability of the wedges in the abutments.Since the finite element method is time-consuming,the neural network is used as an alternative for calculating the wedge safety factor.For training the neural network,1000 random samples are generated and the dam response is calculated.The direction of applied acceleration is changed within 5-degree intervals to reveal the critical direction corresponding to the minimum safety factor.The Latin hypercube sampling(LHS)is employed for sample generation,and the safety level is determined with reliability analysis.Three sample numbers of 1000,2000 and 4000 are used to examine the average and standard deviation of the results.The global sensitivity analysis is used to identify the effects of random variables on the abutment stability.It is shown that friction,cohesion and uplift pressure have the most significant effects on the wedge stability variance.
文摘In this paper, the behavior of barrel-vaulted structures undergoing rocking of the abutments and the effectiveness of a few retrofit solutions are discussed. The comprehension of the structural performance of vault-abutment systems is fundamental for their seismic vulnerability assessment, and for the design of efficient strengthening techniques. In the paper, traditional techniques such as extrados thin concrete slab or masonry spandrel walls as well as an innovative solution with an extrados thin improved lime mortar slab reinforced by means of glass fiber mesh are considered. The different strengthening solutions are studied and compared on the basis of the results of non linear numerical analyses and by reference to a simplified analytical approach. Numerical and analytical models are validated through comparison with the results of a recent experimental study focusing on the behavior of vaulted masonry structures subjected to rocking of the abutments. The validated models can be used by engineers for the seismic vulnerability assessment of masonry vaulted structures as well as for the proportioning of possible extrados strengthening solutions, and will be used in the future to explore different structural system configurations.
文摘Estimating average vertical pillar stresses is a critical step in designing room-and-pillar mines.Several analytical methods can be used to estimate the vertical stresses acting on the pillars.However,the present analytical methods fail to adequately account for the influence of abutments on the distribution of vertical stresses,especially when applied to narrow panel widths and pillar layouts comprising evenly spaced barriers.In this study,a multi-layer perceptron neural network(MLPNN)was applied to predict the vertical loads of regular pillars more accurately.Hundreds of room-and-pillar mine layouts were modeled using a displacement discontinuity method(DDM),and a database of 2355 sampled pillar cases was compiled.The MLPNN was trained based on this database,and its prediction capabilities were further validated using simulations by a finite difference code(i.e.,FLAC3D).The model predictions and the FLAC3D simulations reasonably agreed with a regression coefficient of 0.99.The model was also adapted for mine cases with evenly spaced barrier pillars,and its application to a real case study mine has shown to provide accurate pillar stress estimations;hence,this model is suitable for practical use at mines.Even though the MLPNN model cannot be applied universally to all mine situations,it seems as a significant improvement over existing analytical techniques in terms of accounting for the influence of abutments on pillar stresses.
基金supported by the National Nature Science Foundation of China(grants 81720108011,82071169,82100971).
文摘Stable soft tissue integration around the implant abutment attenuates pathogen penetration,protects underlying bone tissue,prevents peri-implantitis and is essential in maintaining long-term implant stability.The desire for“metal free”and“aesthetic restoration”has favored zirconia over titanium abutments,especially for implant restorations in the anterior region and for patients with thin gingival biotype.Soft tissue attachment to the zirconia abutment surface remains a challenge.A comprehensive review of advances in zirconia surface treatment(micro-design)and structural design(macro-design)affecting soft tissue attachment is presented and strategies and research directions are discussed.Soft tissue models for abutment research are described.Guidelines for development of zirconia abutment surfaces that promote soft tissue integration and evidence-based references to inform clinical choice of abutment structure and postoperative maintenance are presented.
基金financially supported by the Guangxi Key Research and Development Plan Program(AB22036007).
文摘Arch bridges provide significant technical and economic benefits under suitable conditions.In particular,concrete-filled steel tubular(CFST)arch bridges and steel-reinforced concrete(SRC)arch bridges are two types of arch bridges that have gained great economic competitiveness and span growth potential due to advancements in construction technology,engineering materials,and construction equipment over the past 30 years.Under the leadership of the author,two record-breaking arch bridges—that is,the Pingnan Third Bridge(a CFST arch bridge),with a span of 560 m,and the Tian’e Longtan Bridge(an SRC arch bridge),with a span of 600 m—have been built in the past five years,embodying great technological breakthroughs in the construction of these two types of arch bridges.This paper takes these two arch bridges as examples to systematically summarize the latest technological innovations and practices in the construction of CFST arch bridges and SRC arch bridges in China.The technological innovations of CFST arch bridges include cable-stayed fastening-hanging cantilevered assembly methods,new in-tube concrete materials,in-tube concrete pouring techniques,a novel thrust abutment foundation for nonrocky terrain,and measures to reduce the quantity of temporary facilities.The technological innovations of SRC arch bridges involve arch skeleton stiffness selection,the development of encasing concrete materials,encasing concrete pouring,arch rib stress mitigation,and longitudinal reinforcement optimization.To conclude,future research focuses and development directions for these two types of arch bridges are proposed.
文摘Local scour around bridge piers and abutments is one of the most significant causes of bridge failure.Despite a plethora of studies on scour around individual bridge piers or abutments,few studies have focused on the joint impact of a pier and an abutment in proximity to one another on scour.This study conducted laboratory experiments and flow analyses to examine the interaction of piers and abutments and their effect on clear-water scour.The experiments were conducted in a rectangular laboratory flume.They included 18 main tests(with a combination of different types of piers and abutments)and five control tests(with individual piers or abutments).Three pier types(a rectangular pier with a rounded edge,a group of three cylindrical piers,and a single cylindrical pier)and two abutment types(a wingewall abutment and a semicircular abutment)were used.An acoustic Doppler velocimeter was used to measure the three-dimensional flow velocity for analyses of streamline,velocity magnitude,vertical velocity,and bed shear stress.The results showed that the velocity near the pier and abutment increased by up to 80%.The maximum scour depth around the abutment increased by up to 19%.In contrast,the maximum scour depth around the pier increased significantly by up to l71%.The presence of the pier in the vicinity of the abutment led to an increase in the scour hole volume by up to 87%relative to the case with a solitary abutment.Empirical equations were also derived to accurately estimate the maximum scour depth at the pier adjacent to the abutment.
基金We gratefully acknowledge financial support from the National Natural Science Foundation of China(NSFC)(No.51704097)Science Foundation of Henan Polytechnic University(No.J2021–2)+1 种基金Key Research and Development Program of Henan Province,China(No.202102310244)“Science and Technology to Help the Economy 2020”Key Project(No.SQ2020YFF0426364).
文摘The wide pillars are generally popular due to the high productivity and efficiency in Northwest China.The distribution of lateral abutment pressure in coal pillars is important for mining safety.To reveal the effect of the first mining on the lateral abutment pressure distribution and evolution in wide pillars,an in-situ experiment,theoretical analysis and numerical simulation were performed.First,the field monitoring of lateral abutment pressure was conducted from the perspective of time and space in the Chahasu Coal Mine,Huangling No.2 Coal Mine and Lingdong Coal Mine during the first mining.Based on the field monitoring stress,a theoretical model was proposed to reveal the lateral abutment pressure distribution.The methodology was demonstrated through a case study.Aiming at the distribution mechanism,a numerical experiment was conducted through the finite-discrete element method(FDEM).Last,field observations of borehole fractures were performed to further study the damage distribution.In addition,two types of lateral abutment pressure evolution with mining advance were discussed.Suggestions on the stress monitoring layout were proposed as well.The results could provide foundations for strata control and disaster prevention in wide pillars in underground coal mines.
文摘Transport structures built throughout the period from 1960 to 1980 in permafrost regions based on the principle of permafrost preservation are subject to deformations.In many cases,the reason is a gradual change in temperature and their subgrade condition within the active zone due to the structures'technogenic impact.Design solutions for the fifty-year-old structures fail to ensure in all cases their reliable operation at the present time.The greatest danger to the reliable operation of railway lines in cold regions is uneven deformations of bridges,which are barrier places.Therefore,the solution to this problem is urgent especially due to the necessity of increase carrying capacity.The purpose of this study is to increase reliability of bridge operation in cold regions through strengthening the subgrade by reinforcement with injection of solidifying solutions.The problem of uneven deformations due to permafrost degradation is considered using the example of a railway bridge located in the northern line of the Krasnoyarsk railway.Deformations of the bridge abutments began immediately after the construction was completed and the bridge was open for traffic-since 1977.Permafrost degradation was developing more actively straight under the abutments due to higher thermal conductivity of the piles concrete.Notably,thawing intensity of frozen soils under the bridge abutments is uneven due to its orientation to the cardinal points.The analysis of archive materials and results of the geodetic survey made it possible to systematize the features of augmenting deformations of each abutment over time.The engineering-geological survey with drilling wells near the abutments ensured determination of soil characteristics,both in the frozen and thawed states.Thermometric wells were arranged to measure temperatures.The analysis and systematization of the data obtained allowed us to develop geotechnical models for each abutment of the bridge.The peculiarity of these models is allowance for changes in the strength and deformation characteristics of the soil calculated layers depending on changes in temperature and the soil condition.Thus,different calculated geological elements with the corresponding strength and deformation characteristics were identified in the soil layers of the same origin.The analysis of the systematized geodetic data allowed us to confirm adequacy of the developed geotechnical models.Studies carried out using geotechnical models made it possible to predict improvement of physical and mechanical characteristics of the subgrade to prevent further growth deformations of the bridge abutments.The method of reinforcement by injection is proposed.Injecting a solution under pressure leads to strengthening of weakened thawed soils and improving their physical and mechanical properties.This research theoretically substantiates and develops the geotechnical models of the reinforced pier footing of bridge abutments by injection of solidifying solutions.The models take into account the reinforcement parameters and elements for the case in question.The influence of reinforcement on the change in physical and mechanical properties of the soil mass is determined.
文摘Scour is a natural phenomenon that is created by the rivers streams or the flood which brings about transferring or eroding of bed materials. To have accurate and safe erosion control structures design, maximum scour depth in downstream of the structures gains specific significance. In the current study, M5 model tree as remedy data mining approaches is suggested to estimate the scour depth around the abutments. To do this, Kayaturk laboratory data (2005), with different hydraulic conditions, are used. Then, the results of M5 model were also compared with genetic programming (GP) and pervious empirical results to investigate the applicability, ability, and accuracy of these procedures. To examine the accuracy of the results yielded from the M5 and GP procedures, two performance indicators (determination coefficient (R2) and root mean square error (RMSE)) were used. The comparison test of results clearly shows that the implementation of M5 technique sounds satisfactory regarding the performance indicators (R<sup>2</sup> = 0.944 and RMSE = 0.126) with less deviation from the numerical values. In addition, M5 tree model, by presenting relationships based on liner regression, has good capability to estimate the depth of scour abutment for engineers in practical terms.
基金supported by the National Natural Science Foundation of China(No.51074004)the Open Project of State Key Laboratory Breeding Base for Mining Disaster Prevention and Control of Shandong University of Science and Technology of China(No.MDPC2012KF06)+1 种基金the Natural Science Foundation of Anhui Province of China(No.11040606M102)Young Teachers Science Foundation of Anhui University of Science&Technology of China(No.2012QNZ14)
文摘According to the distribution of abutment stress in a stope,this research established the mechanical model of mining abutment pressure transmission in floor base on the theory of semi-infnite plate body in elasticity.This study takes the 762 working face of Haizi Coal Mine as a case in point,and analyzed the dynamic evolution law of seam floor stress during the mining process.With an organic combination of the mining floor stress and surrounding rock stress,the study obtained the change laws of the maximum principle stress and the minimum one for the floor roadway surrounding rock when mining the upper working face.Considering the non-constant pressure force state and the cracks revolution mechanisms of floor roadway surrounding rock,the research built the mechanical model of roadway stress.Simulation results verify the reliability of the above conclusions.Moreover,this model could provide the theoretical basis and technical support for controlling floor roadway surrounding rock.
基金funded by the Science and Technology Department of Railway Ministry (Grant No. Z2012061)
文摘Abutment piles in soft ground may be subjected to both vertical and horizontal soil movements resulting from approach embankment loads. To constrain the soil movements, the soft soil ground beneath the approach embankment is often improved using composite pile foundations, which aim at mitigating the bump induced by high-speed trains passing through the bridge. So far, there is limited literature on exploring the influence of the degree of ground improvement on abutment piles installed in soft soil grounds. In this paper, a series of three-dimensional (3D) centrifuge model tests was performed on an approach embankment over a silty clay deposit improved by cement-fly ash-gravel (CFG) piles combined with geogrid. Emphasis is placed on the effects of ground replacement ratio (m) on the responses of the abutment piles induced by embankment loads. Meanwhile, a numerical study was conducted with varying ground replacement ratio of the pile-reinforced grounds. Results show that the performance of the abutment piles is significantly improved when reinforcing the ground with CFG piles beneath the approach embankment. Interestingly, there is a threshold value of the replacement ratio of around 4.9% above which the effect of CFG pile foundations is limited. This implies that it is essential to optimize the ground improvement for having a cost-effective design while minimizing the risk of the bump at the end of bridge.
基金provided by the National Natural Science Foundation of China(No.51174195)the State Key Laboratory of Coal Resources and Mine Safety of China University of Mining and Technology(No.SKLCRSM08X04)+1 种基金a foundation for the author of the National Excellent Doctoral Dissertation of China(No.200760)the Science Research Fund of China University of Mining and Technology(No.2008A002)
文摘Floor heave is the most common convergence in gob-side entry retaining.The paper analyzes the form,process and characteristics of gob-side entry retaining with the comprehensive methods of theoretical analysis,numerical simulation and the field trial.Research results present that bending and folding floor heave is the main factor in the stage of the first panel mining;squeezing and fluidity floor heave plays a great role in the stable stage of gob-side entry retaining;the combination of the former two factors affects mainly the stage of the second mining ahead;abutment pressure is a fundamental contribution to the serious floor heave of gob-side entry retaining,and sides corners of solid coal body are key part in the case of floor heave controlling of gob-side entry retaining.Floor heave of gob-side entry retaining can be significantly controlled by reinforcing sides and corners of solid coal body,and influence rules on the floor heave of gob side entry retaining of sides supporting strength and the bottom bolt orientation in solid coal side are obtained.Research results have been successfully applied in gob-side entry retaining of G20-F23070 face haulage roadway in #2 coal mine of Pingmei Group,and the field observation shows that the proposed technique is an effective way in controlling the floor heave of gob-side entry retaining.
基金supported by National Key R&D Program of China (No. 2017YFC060300204)Yue Qi Young Scholar Project,CUMTB and Yue Qi Distinguished Scholar Project (No. 800015Z1138)China University of Mining & Technology, Beijing
文摘Abutment pressure distribution is different when a longwall panel is passing through the abandoned gate roads in a damaged coal seam. According to the geological condition of panel E13103 in Cuijiazhai Coal Mine in China, theoretical analysis and finite element numerical simulation were used to determine the front pressure distribution characteristics when the longwall face is 70, 50, 30, 20, 10, and 5 m from the abandoned roadways. The research results show that the influence range of abutment pressure is 40 to 45 m outby the face, and the peak value of front abutment pressure is related to the distance between the face and abandoned roadways. When the distance between the longwall face and abandoned roadways is reduced from 50 to 10 m, the front abutment pressure peak value kept increasing. When the distance is 10 m, it has reached the maximum. The peak value is located in 5 to 6 m outby the faceline. When the distance between the longwall face and abandoned roadways is reduced from 10 to 5 m, the front abutment pressure sharply decreases, the intact coal yields and is even in plastic state. The peak value transfers to the other side of the abandoned roadways. The research results provide a theoretical basis for determining the advance support distance of two roadways in the panel and the reinforcement for face stability when the longwall face is passing through the abandoned roadways.
基金Project(51104176)supported by the National Natural Science Foundation of China
文摘In light of the severe deformation and destruction of the district raise tunnel in the mining area at the northern part of the Lubanshan colliery, by the theoretic analysis and numerical simulation, both the mining stress distribution in seams group and the deformation and destruction mechanism of floor district raise were investigated. The results show that, at the maximum vertical distance of 40 m, the abutment stress has an influence on the recovery of 2# and 3# coal seam and 8# coal seam at distance of 30 m. As a result, the recovery of 8# is rather than those of 2# or 3# coal seam, which contributes to the deformation and destruction of the district raise surrounding rock. The major factors affecting the abutment stress include the mining depth, mining height, residual gob space, adjacent working faces and short spacing coal seam recovery.
基金The authors gratefully acknowledge the financial support received from the National Natural Science Foundation of China(Grant Nos.51504257 and 51674266)the State Key Research Development Program of China(Grant No.2016YFC0600704)+1 种基金the Fund of Yue Qi Outstanding Scholars(Grant No.2018A16)the Open Fund of the State Key Laboratory of Coal Mine Disaster Dynamics and Control at Chongqing University(Grant No.2011DA105287-FW201604).
文摘Investigating the stress drop of abutment pressure is the key to a deep quantitative analysis of the discontinuous stress redistribution under mining.In the present study,uniaxial and triaxial compression tests are carried out separately to determine the bulk and shear moduli,the cohesion,and the internal friction angle of the coal samples.By extending the meaning of Mohr’s circle referring to yield stress instead of the maximum principal stress,a yield line is introduced to illustrate the stress drop of Mohr’s circle referring to yield stress instead of the maximum principal stress at the elastoplastic boundary.Furthermore,a theoretical solution of the stress drop as a function of the damage is proposed to investigate how the abutment pressure differs considering the yield line and failure line.In addition,applying the stress drop at the yield line in non-pillar mining,top coal mining,and protective coal mining shows that the damage has a nonlinearly positive influence on the stress drop.The results shows that the bulk modulus and internal friction angle have a more sensitive influence on the stress drop than do the shear modulus and cohesion.Finally,the stress drop is divided into a discontinuous stress drop at the yield line and a structural stress drop at the failure line.The stress drop is effective in describing the discontinuous stress redistribution and shows a clear difference in the movement direction of Mohr’s circle considering the unloading pressure.
文摘Accurately estimating load distributions and ground responses around underground openings play a significant role in the safety of the operations in underground mines.Adequately designing pillars and other support measures relies highly on the accurate assessment of the loads that will be carried by them,as well as the load-bearing capacities of the supports.There are various methods that can be used to approximate mining-induced loads in stratified rock masses to be used in pillar design.The empirical methods are based on equations derived from large databases of various case studies.They are implemented in government approved design tools and are widely used.There are also analytical and numerical techniques used for more detailed analysis of the induced loads.In this study,two different longwall mines with different panel width-to-depth ratios are analyzed using different methods.The empirical method used in the analysis is the square-decay stress function that uses the abutment angle concept,implemented in pillar design software developed by the National Institute for Occupational Safety and Health(NIOSH).The first numerical method used in the analysis is a displacement-discontinuity(DD)variation of the boundary element method,LaModel,which utilizes the laminated overburden model.The second numerical method used in the analysis is Fast Lagrangian Analysis of Continua(FLAC)with the numerical modeling approach recently developed at West Virginia University which is based on the approach developed by NIOSH.The model includes the 2D slice of a cross-section along the width of the panel with the chain pillar system that also includes the different stratigraphic layers of the overburden.All three methods gave similar results for the shallow mine,both in terms of load percentages and distribution where the variation was more obvious for the deep cover mine.The FLAC3D model was observed to better capture the stress changes observed during the field measurements for both the shallow and deep cover cases.This study allowed us to see the shortcomings of each of these different methods.It was concluded that a numerical model which incorporates the site-specific geology would provide the most precise estimate for complex loading conditions.
基金This work was supported by the Russian Science Foundation,under grant 19-71-00083.Authors also would like to express gratitude to an anonymous reviewer whose comments helped to improve the quality of paper,and editors of the journal.
文摘An essential stage of mine design is an estimation of the steps of the first and periodic roof caving in longwall mines.Generally,this is carried out using the field experience and can be much enhanced by numerical simulation.In this work,the finite-difference method was applied coupled with the continuum damage mechanics(CDM)approach to simulate the stress-strain evolution of the rock mass with the underground opening during coal extraction.The steps and stages of roof caving were estimated relying on the numerical simulation data,and they were compared with the field data from several operating mines in the south of the Kuznetsk Basin,Russia.The dependence of the first roof caving step in simulation linearly correlates with field data.The results correspond to the actual roofs of longwall panels of the flat-dipping coal seams and the average rate of face advancement is approximately 5 m/day.