The effect of the run-out table cooling patterns on the microstructure and mechanical properties of Nb microalloyed steel plates was investigated by hot rolling experiment. The results showed that the mixed microstrue...The effect of the run-out table cooling patterns on the microstructure and mechanical properties of Nb microalloyed steel plates was investigated by hot rolling experiment. The results showed that the mixed microstrueture containing ferrite, bainite and significant amounts of retained austenite can be obtained through three kinds of cooling patterns on the run-out table under the same hot rolling condition. Three kinds of cooling patterns possess different austenite transformation kinetics, which leads to variations in microconstituent characteristics. The yield strength increases, the tensile strength decreases and the total elongation tends to increase as the cooling patterns Ⅰ , Ⅱ and Ⅲ were applied respectively. The yield strength, the total elongation and the product of tensile strength and ductility reach the maximum values (547 MPa, 37. 2% and 28 384 MPa% respectively) for the steel plate processed by cooling pattern Ⅲ.展开更多
In this study, the effect of cooling rates on microstructures and mechanical properties in a Al-bearing hot-rolled transformation- induced plasticity steel was investigated. The experiments were carried out using hot ...In this study, the effect of cooling rates on microstructures and mechanical properties in a Al-bearing hot-rolled transformation- induced plasticity steel was investigated. The experiments were carried out using hot simulation machine and hot rolling mill, where the samples were cooled at different cooling rates. The results showed that with the increase in cooling rates, film-like retained austenite gradually disappeared and only blocky retained austenite was retained at higher cooling rates. The volume fraction of retained austenite was 9-11% at cooling rates of 0.05-1 ℃/s and 4-6% at cooling rates of 5-10 ℃/s. In addition, martensite/austenite island was observed because of the heterogeneous carbon distribution. The samples cooled at 0.05℃/s and 0.5 ℃/s exhibited excellent mechanical properties, with tensile strengths of 712 MPa and 726 MPa, total elongations of 42% and 36% and strength and ductility balances of 29.91 GPa% and 26.15 GPa%, respectively. During plastic deformation, the instantaneous work hardening exponent of the sample cooled at 0.05 ℃/s increased continuously until it reached the maximum value, while the instantaneous work hardening exponent of the sample cooled at 0.5℃/s remained stable.展开更多
Ultra low carbon steels by the thermal mechanical control process(TMCP) with less Ni,Cr,and Mo contents have been developed for 550 MPa grade heavy gauge ship hulls and offshore structures.The relationships among mi...Ultra low carbon steels by the thermal mechanical control process(TMCP) with less Ni,Cr,and Mo contents have been developed for 550 MPa grade heavy gauge ship hulls and offshore structures.The relationships among microstructures,process,and properties of the studied steel have been investigated.A series of accurate control technologies have been developed for this kind of steel.Cu microalloying and TMCP+relaxation precipitation control(RPC)+accelerated cooling process were employed to optimize the mechanical properties and ensure the homogeneity of the 80-mm thick plate.The microstructures of thin plates slightly changed from surface to center,but the micro-structures of the heavy gauge plate(80 mm) changed notably.Adopting the simple composition,it can meet the requirement of thin plates by adopting a few microalloys.As for thick plates(80 mm),a little higher Cu and Ni contents should be adopted.These steels can meet the needs without tempering.By these ways,the properties of the steels can be optimized,and the cost can be decreased notably.展开更多
EP-823 steel is one of the candidate materials for accelerator-driven systems/lead-cooled fast reactors (ADS/LFR). Its weldability was investigated by mechanical property tests and microstructure analysis on the enl...EP-823 steel is one of the candidate materials for accelerator-driven systems/lead-cooled fast reactors (ADS/LFR). Its weldability was investigated by mechanical property tests and microstructure analysis on the enlarged heat-affected zones (HAZs) made by numerical and physical simulation. The finite element numerical simulation could simulate the welding thermal cycle of the characteristic regions in HAZs with extremely high accuracy, The physical simulation performed on a Gleeble simulator could enlarge the characteristic regions to easily investigate the relationship between the microstructure evolution and the mechanical properties of the HAZs. The results showed that the simulated partially normalized zone comprising tempered martensite, newly formed martensite and more tiny carbides has the highest impact energy. The fully normalized zone exhibits the highest hardness because of the quenched martensite and large carbides. The ductile property of the overheated zone is poor for the residual delta- ferrite phases and the quenched martensite.展开更多
文摘The effect of the run-out table cooling patterns on the microstructure and mechanical properties of Nb microalloyed steel plates was investigated by hot rolling experiment. The results showed that the mixed microstrueture containing ferrite, bainite and significant amounts of retained austenite can be obtained through three kinds of cooling patterns on the run-out table under the same hot rolling condition. Three kinds of cooling patterns possess different austenite transformation kinetics, which leads to variations in microconstituent characteristics. The yield strength increases, the tensile strength decreases and the total elongation tends to increase as the cooling patterns Ⅰ , Ⅱ and Ⅲ were applied respectively. The yield strength, the total elongation and the product of tensile strength and ductility reach the maximum values (547 MPa, 37. 2% and 28 384 MPa% respectively) for the steel plate processed by cooling pattern Ⅲ.
基金support from the National Natural Science Foundation of China (No. 51504063)
文摘In this study, the effect of cooling rates on microstructures and mechanical properties in a Al-bearing hot-rolled transformation- induced plasticity steel was investigated. The experiments were carried out using hot simulation machine and hot rolling mill, where the samples were cooled at different cooling rates. The results showed that with the increase in cooling rates, film-like retained austenite gradually disappeared and only blocky retained austenite was retained at higher cooling rates. The volume fraction of retained austenite was 9-11% at cooling rates of 0.05-1 ℃/s and 4-6% at cooling rates of 5-10 ℃/s. In addition, martensite/austenite island was observed because of the heterogeneous carbon distribution. The samples cooled at 0.05℃/s and 0.5 ℃/s exhibited excellent mechanical properties, with tensile strengths of 712 MPa and 726 MPa, total elongations of 42% and 36% and strength and ductility balances of 29.91 GPa% and 26.15 GPa%, respectively. During plastic deformation, the instantaneous work hardening exponent of the sample cooled at 0.05 ℃/s increased continuously until it reached the maximum value, while the instantaneous work hardening exponent of the sample cooled at 0.5℃/s remained stable.
基金supported by the National High-Tech Research and Development Program of China(No.2006AA03Z057)
文摘Ultra low carbon steels by the thermal mechanical control process(TMCP) with less Ni,Cr,and Mo contents have been developed for 550 MPa grade heavy gauge ship hulls and offshore structures.The relationships among microstructures,process,and properties of the studied steel have been investigated.A series of accurate control technologies have been developed for this kind of steel.Cu microalloying and TMCP+relaxation precipitation control(RPC)+accelerated cooling process were employed to optimize the mechanical properties and ensure the homogeneity of the 80-mm thick plate.The microstructures of thin plates slightly changed from surface to center,but the micro-structures of the heavy gauge plate(80 mm) changed notably.Adopting the simple composition,it can meet the requirement of thin plates by adopting a few microalloys.As for thick plates(80 mm),a little higher Cu and Ni contents should be adopted.These steels can meet the needs without tempering.By these ways,the properties of the steels can be optimized,and the cost can be decreased notably.
基金financial support from the National Natural Science Foundation of China(NSFC)under grant No.91226204the Chinese Academy of Science Strategic Pilot Project(The Future of Advanced Nuclear Energy,ADS Evolution System)under grant No.XDA03010304
文摘EP-823 steel is one of the candidate materials for accelerator-driven systems/lead-cooled fast reactors (ADS/LFR). Its weldability was investigated by mechanical property tests and microstructure analysis on the enlarged heat-affected zones (HAZs) made by numerical and physical simulation. The finite element numerical simulation could simulate the welding thermal cycle of the characteristic regions in HAZs with extremely high accuracy, The physical simulation performed on a Gleeble simulator could enlarge the characteristic regions to easily investigate the relationship between the microstructure evolution and the mechanical properties of the HAZs. The results showed that the simulated partially normalized zone comprising tempered martensite, newly formed martensite and more tiny carbides has the highest impact energy. The fully normalized zone exhibits the highest hardness because of the quenched martensite and large carbides. The ductile property of the overheated zone is poor for the residual delta- ferrite phases and the quenched martensite.