期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
Tunnel flexibility effect on the ground surface acceleration response 被引量:4
1
作者 Mohammad Hassan Baziar asoud Rabeti Moghadam +1 位作者 Yun Wook Choo Dong-Soo Kim 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2016年第3期457-476,共20页
Flexibility of underground structures relative to the surrounding medium, referred to as the flexibility ratio, is an important factor that influences their dynamic interaction. This study investigates the flexibility... Flexibility of underground structures relative to the surrounding medium, referred to as the flexibility ratio, is an important factor that influences their dynamic interaction. This study investigates the flexibility effect of a box-shaped subway tunnel, resting directly on bedrock, on the ground surface acceleration response using a numerical model verified against dynamic centrifuge test results. A comparison of the ground surface acceleration response for tunnel models with different flexibility ratios revealed that the tunnels with different flexibility ratios influence the acceleration response at the ground surface in different ways. Tunnels with lower flexibility ratios have higher acceleration responses at short periods, whereas tunnels with higher flexibility ratios have higher acceleration responses at longer periods. The effect of the flexibility ratio on ground surface acceleration is more prominent in the high range of frequencies. Furthermore, as the flexibility ratio of the tunnel system increases, the acceleration response moves away from the free field response and shifts towards the longer periods. Therefore, the flexibility ratio of the underground tunnels influences the peak ground acceleration (PGA) at the ground surface, and may need to be considered in the seismic zonation of urban areas. 展开更多
关键词 box-shaped tunnel flexibility ratio acceleration response ground surface centrifuge modeling numericalsimulation
下载PDF
Modelling spiky acceleration response of dilative sand deposits during earthquakes with emphasis on large post-liquefaction deformation 被引量:2
2
作者 Wang Gang Wei Xing John Zhao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第1期125-138,共14页
The acceleration records at some liquefied sand deposits exhibit a distinctive spiky waveform, characterized by strong amplification and high-frequency components. A comprehensive constitutive model was used to analyz... The acceleration records at some liquefied sand deposits exhibit a distinctive spiky waveform, characterized by strong amplification and high-frequency components. A comprehensive constitutive model was used to analyze the mechanism of such spiky acceleration responses. An idealized single-degree-of-freedom(SDF) system was constructed, in which the force-displacement relation of the spring follows the stress-strain behavior of saturated sand during undrained shearing. The SDF system demonstrated that the spikes are directly related to the strain-hardening behavior of sand during post-liquefaction cyclic shearing. Furthermore, there exists a threshold shear strain length, which is in accordance with the limited amplitude of the fluid-like shear strain generated at instantaneous zero effective stress state during the post-liquefaction stage. The spiky acceleration can only occur when the cyclic shear strain exceeds the threshold shear strain length. It is also revealed that the time intervals between the acceleration spikes increase gradually along with the continuation of shaking because the threshold shear strain length increases gradually and then more time is needed to generate larger shear strain to cause strain hardening. Records at the Kushiro Port site and Port Island site during past earthquakes are simulated through the fully coupled method to validate the presented mechanism. 展开更多
关键词 spiky acceleration cyclic mobility post-liquefaction seismic response sand
下载PDF
Three-dimensional seismic isolation bearing and its application in long span hangars 被引量:12
3
作者 Li Xiongyan Xue Suduo Cai Yancheng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第1期55-65,共11页
Based on the seismic response characteristics of space frame structures,a new type of seismic isolation bearing defined as a three-dimensional seismic isolation bearing(3DSIB) is developed in this paper.The bearing ... Based on the seismic response characteristics of space frame structures,a new type of seismic isolation bearing defined as a three-dimensional seismic isolation bearing(3DSIB) is developed in this paper.The bearing offers excellent properties such as multi-dimensional seismic isolation,reasonable rotation capability,good ability to resist lifting load,uncoupled stiffness in horizontal and vertical directions,etc.In the 3DSIB,the horizontal dimension is designed by combining the Teflon sliding device and helical spring,while the vertical dimension is developed by introducing disk springs or helical springs.The mathematical model of the 3DSIB was established and its performance with the critical parameters was tested on a shaking table.Furthermore,the 3DSIB was applied in a 120 m span hangar structure and simulated using SAP2000 software to evaluate its performance in practical structures.The performance of the structures with and without 3DSIB was compared.It is shown that the hangar structure with 3D bearings achieves a better performance.The axial force and acceleration response of the structures with 3DSIB are effectively reduced,while the displacement response of the bearing is within the predetermined range. 展开更多
关键词 three-dimensional seismic isolation bearing (3DSIB) seismic isolation HANGAR axial force acceleration response
下载PDF
Optimization Design and Performance Analysis of Vehicle Powertrain Mounting System 被引量:5
4
作者 Han Zhou Hui Liu +1 位作者 Pu Gao Chang-Le Xiang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第2期76-88,共13页
The design strategies for powertrain mounting systems play an important role in the reduction of vehicular vibration and noise. As stiffness and damping elements connecting the transmission system and vehicle body, th... The design strategies for powertrain mounting systems play an important role in the reduction of vehicular vibration and noise. As stiffness and damping elements connecting the transmission system and vehicle body, the rubber mount exhibits better vibration isolation performance than the rigid connection. This paper presents a complete design process of the mounting system, including the vibration decoupling, vibration simulation analysis, topology optimization, and experimental verification. Based on the 6?degrees?of?freedom vibration coupling model of the powertrain mounting system, an optimization algorithm is used to extract the best design parameters of each mount, thus rendering the mounting system fully decoupled and the natural frequency well configured, and the optimal parameters are used to design the mounting system. Subsequently, vibration simulation analysis is applied to the mounting system, considering both transmission and road excitations. According to the results of finite element analysis, the topological structure of the metal frame of the front mount is optimized to improve the strength and dynamic characteristics of the mounting system. Finally, the vibration bench test is used to verify the availability of the optimization design with the analysis of acceleration response and vibration transmissibility of the mounting system. The results show that the vibration isolation performance of the mounting system can be improved effectively using the vibration optimal decoupling method, and the structural modification of the metal frame can well promote the dynamic characteristics of the mounting system. 展开更多
关键词 Mounting system Optimization algorithm Vibration simulation analysis Topological structure acceleration response Vibration transmissibility
下载PDF
Artificial ground motion compatible with specified ground shaking peaks and target response spectrum 被引量:6
5
作者 赵凤新 张郁山 吕红山 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2006年第1期41-48,共8页
This article describes a hybrid simulation method to generate artificial ground motion time histories that are compatible with specified peak seismic acceleration, velocity and displacement as well as the target respo... This article describes a hybrid simulation method to generate artificial ground motion time histories that are compatible with specified peak seismic acceleration, velocity and displacement as well as the target response spectrum of absolute acceleration. First, based on traditional methods that match the target spectrum in the frequency domain, an initial acceleration time history was synthesized to satisfy the specified peak acceleration, target spectral acceleration and intensity envelope. Second, by using the inversion formula of the seismic input to a linear single-degree-of-freedom system and by superimposing a series of narrow-band time histories in the time domain, the initial time history is further modified to allow its peak velocity and displacement to approach the targets and improve its matching precision with the target spectrum. Numerical examples are provided to demonstrate that the proposed method achieves good agreement with the target values. 展开更多
关键词 artificial ground motion acceleration response spectrum ground shaking peaks spectrum matching
下载PDF
Characteristics of response spectra for long-periods of main-shock recordings of the Chi-Chi earthquake 被引量:3
6
作者 陈勇 俞言祥 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2007年第2期111-121,共11页
Current practice uses predictive models to extrapolate long-period response spectra based on far-field recordings in moderate and weak earthquakes. However, the spectra are not long enough and the data are often not r... Current practice uses predictive models to extrapolate long-period response spectra based on far-field recordings in moderate and weak earthquakes. However, the spectra are not long enough and the data are often not reliable, which means that the seismic design code cannot accurately define seismic design requirements for long-period structures. The near-field recordings in the main-shock of the Chi-Chi earthquake have a large signal-to-noise ratio (SNR), which makes them suitable for studying the long-period acceleration response spectrum up to 20 sec. The acceleration response spectra from 246 stations within 120 km of the causative fault are statistically analyzed in this paper. The influence of distance and site conditions on long-period response spectrum is discussed, and the shapes of the amplification spectra are compared with the standard spectra specified in the seismic design code of China. Finally, suggestions for future revisions to the code are proposed. 展开更多
关键词 long-period main-shock recordings Chi-Chi earthquake signal-to-noise ratio acceleration response spectrum amplification spectrum
下载PDF
Dynamic interaction numerical models in the time domain based on the high performance scaled boundary finite element method 被引量:2
7
作者 Li Jianbo Liu Jun Lin Gao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第4期541-546,共6页
Consideration of structure-foundation-soil dynamic interaction is a basic requirement in the evaluation of the seismic safety of nuclear power facilities. An efficient and accurate dynamic interaction numerical model ... Consideration of structure-foundation-soil dynamic interaction is a basic requirement in the evaluation of the seismic safety of nuclear power facilities. An efficient and accurate dynamic interaction numerical model in the time domain has become an important topic of current research. In this study, the scaled boundary finite element method (SBFEM) is improved for use as an effective numerical approach with good application prospects. This method has several advantages, including dimensionality reduction, accuracy of the radial analytical solution, and unlike other boundary element methods, it does not require a fundamental solution. This study focuses on establishing a high performance scaled boundary finite element interaction analysis model in the time domain based on the acceleration unit-impulse response matrix, in which several new solution techniques, such as a dimensionless method to solve the interaction force, are applied to improve the numerical stability of the actual soil parameters and reduce the amount of calculation. Finally, the feasibility of the time domain methods are illustrated by the response of the nuclear power structure and the accuracy of the algorithms are dynamically verified by comparison with the refinement of a large-scale viscoelastic soil model. 展开更多
关键词 time domain analysis dynamic interaction acceleration impulse response function scaled boundary finiteelement method viscoelastic boundary
下载PDF
Artificial ground motion compatible with specified peak velocity and target spectrum 被引量:1
8
作者 赵凤新 张郁山 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2006年第4期461-471,共11页
In this paper, a method, which synthesizes the artificial ground motion compatible with the specified peak velocity as well as the target acceleration response spectrum, was proposed. In this method, firstly, an initi... In this paper, a method, which synthesizes the artificial ground motion compatible with the specified peak velocity as well as the target acceleration response spectrum, was proposed. In this method, firstly, an initial acceleration time history α8^(0) (t), which satisfies the prescribed peak ground acceleration, the target spectral acceleration ST(ω, ζ),and the specified intensity envelope, is generated by the traditional method that generates the requency domain; secondly,α8^(0) (t)is further modulated by superimposing narrow-band time histories upon it in the time domain to make its peak velocity, approach the target peak ground velocity, and at the same time to improve its fitting precision to the target spectrum. Numerical examples show that this algorithm boasts high calculation precisions. 展开更多
关键词 artificial ground motion acceleration response spectrum peak velocity FITTING
下载PDF
Generating ground motion by two new techniques of adding harmonic wave in the time domain and approximating to response spectrum as a whole 被引量:2
9
作者 蔡长青 沈建文 《Acta Seismologica Sinica(English Edition)》 CSCD 1997年第1期85-94,共10页
In this paper,two new methods are introduced to fit response spectrum in generating earthquake acceleration time history.The first method is Adding Harmonic Wave in Time Domain(AHWTD).In this method, a control point o... In this paper,two new methods are introduced to fit response spectrum in generating earthquake acceleration time history.The first method is Adding Harmonic Wave in Time Domain(AHWTD).In this method, a control point of response spectrum is adjusted by adding a harmonic time history to the adjusted one.Three features of the method are that it has small cross interference,small amount of computation and it can give consideration to the amplitude envelope.The second one is Approximating Response Spectrum as a Whole(ARSW).This method has following feature. When adjust a time history that is decided by amplitude spectrum A k and phase spectrum φ k(k =0, 1, 2, …, n ), the mean square root of every relative error E j(j= 1, 2, …, M ) between response spectrum and object spectrum V r=∑Mj=1E 2 j/M is used to decide adjusting direction of any amplitude spectrum A k . Because E j and V r are functions of A k and φ k , the problem of fitting response spectrum in generating earthquake acceleration time history can be changed to a problem of finding minimum point of V r . Restricted by Nyquist frequency, AHWTD is not suitable for high frequencies of response spectrum. Restricted by frequency distribution of FFT, the density of control points in the low frequency part can′t be too dense for ARSW. But two methods can replenish each other and get such a good fitting effect that we can fit the given peak ground acceleration and peak ground velocity well at the same time. 展开更多
关键词 response spectrum peak ground acceleration peak ground velocity
下载PDF
A probability-consistent method based on practical ground surface motion 被引量:1
10
作者 蔡长青 沈建文 《Acta Seismologica Sinica(English Edition)》 CSCD 1998年第5期49-56,共8页
In this paper, a new method for seismic hazard analysis, the probability-consistent method based on practical ground surface motion is proposed. Time histories on ground surface in the method correspond to earthquakes... In this paper, a new method for seismic hazard analysis, the probability-consistent method based on practical ground surface motion is proposed. Time histories on ground surface in the method correspond to earthquakes occurring at potential sources around sites. So of the envelope parameter, response spectrum, peak ground acceleration are of physical sense. Neglecting the response of site soil layers, the method is the same as routine probability-consistent method. The natural seismic acceleration time histories can be used for input wave directly. Generating ground motion is an approximation under lack of data of strong motion. Along with accumulating of the strong motion data around sites, we can describe the seismic environment more objectively. 展开更多
关键词 physical sense probability-consistent method response spectrum time history of acceleration strong earthquake
下载PDF
Real-time determination of sandy soil stiffness during vibratory compaction incorporating machine learning method for intelligent compaction
11
作者 Zhengheng Xu Hadi Khabbaz +1 位作者 Behzad Fatahi Di Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第5期1609-1625,共17页
An emerging real-time ground compaction and quality control, known as intelligent compaction(IC), has been applied for efficiently optimising the full-area compaction. Although IC technology can provide real-time asse... An emerging real-time ground compaction and quality control, known as intelligent compaction(IC), has been applied for efficiently optimising the full-area compaction. Although IC technology can provide real-time assessment of uniformity of the compacted area, accurate determination of the soil stiffness required for quality control and design remains challenging. In this paper, a novel and advanced numerical model simulating the interaction of vibratory drum and soil beneath is developed. The model is capable of evaluating the nonlinear behaviour of underlying soil subjected to dynamic loading by capturing the variations of damping with the cyclic shear strains and degradation of soil modulus. The interaction of the drum and the soil is simulated via the finite element method to develop a comprehensive dataset capturing the dynamic responses of the drum and the soil. Indeed, more than a thousand three-dimensional(3D) numerical models covering various soil characteristics, roller weights, vibration amplitudes and frequencies were adopted. The developed dataset is then used to train the inverse solver using an innovative machine learning approach, i.e. the extended support vector regression, to simulate the stiffness of the compacted soil by adopting drum acceleration records. Furthermore, the impacts of the amplitude and frequency of the vibration on the level of underlying soil compaction are discussed.The proposed machine learning approach is promising for real-time extraction of actual soil stiffness during compaction. Results of the study can be employed by practising engineers to interpret roller drum acceleration data to estimate the level of compaction and ground stiffness during compaction. 展开更多
关键词 Intelligent compaction Machine learning method Finite element modelling acceleration response
下载PDF
The dependence of response spectrum on the tectonic ambient shear stress field
12
作者 李保昆 陈培善 白彤霞 《Acta Seismologica Sinica(English Edition)》 CSCD 2005年第3期313-321,378,共10页
It has been analyzed the influence of the tectonic ambient shear stress value on response spectrum based on the previous theory. Based on the prediction equation BJF94 presented by the famous American researchers, CLB... It has been analyzed the influence of the tectonic ambient shear stress value on response spectrum based on the previous theory. Based on the prediction equation BJF94 presented by the famous American researchers, CLB20, a new prediction formula is proposed by us, where it is introduced the influence of tectonic ambient shear stress value on response spectrum. BJF94 is the prediction equation, which mainly depends on strong ground motion data from western USA, while the prediction equation SEA99 is based on the strong ground motion data from exten-sional region all over the world. Comparing these two prediction equations in detail, it is found that after BJF94′s prediction value lg(Y) minus 0.16 logarithmic units, the value is very close to SEA99′s one. This case demonstrates that lg(Y) in extensional region is smaller; the differences of prediction equation are mainly owe to the differences of tectonic ambient shear stress value. If the factor of tectonic ambient shear stress value is included into the pre-diction equation, and the magnitude is used seismic moment magnitude to express, which is universal used around the world, and the distance is used the distance of fault project, which commonly used by many people, then re-gional differences of prediction equation will become much less, even vanish, and it can be constructed the uni-versal prediction equation proper to all over the world. The error in the earthquake-resistant design in China will be small if we directly use the results of response spectrum of USA (e.g. BJF94 or SEA99). 展开更多
关键词 acceleration response spectrum tectonic ambient shear stress field prediction equation of re-sponse spectrum seismic moment magnitude distance of fault project
下载PDF
Numerical Analysis on the Seismic Performance of Plane Irregular Structure Based on ABAQUS
13
作者 Lina Zong Feng Xu +1 位作者 Wei Yuan Xiaolei Ji 《Journal of Architectural Research and Development》 2020年第4期14-21,共8页
Rod element and shell element were used in finite element software ABAQUS to establish dynamic elastic-plastic analysis model of the structure,the seismic performance of an irregular plane complex overrun structure nu... Rod element and shell element were used in finite element software ABAQUS to establish dynamic elastic-plastic analysis model of the structure,the seismic performance of an irregular plane complex overrun structure numerical simulation,the structure was calculated under different input level and displacement response of the acceleration response,and analyses the force of the wear layer column and the floor of the open hole stress level.The results were compared with the shaking table test to verify the accuracy of the numerical simulation results.The results of numerical calculation were basically consistent with the experimental results,and the finite element model basically reflected the response of the structure under the simulated earthquake. 展开更多
关键词 Plane Irregular structure ELASTIC-PLASTIC acceleration response Seismic performance Weak component
下载PDF
A Study of the Effect of Soil Improvement Based on the Numerical Site Response Analysis of Natural Ground in Babol City
14
作者 Asskar Janalizadechoobbasti Mehran Naghizadeh rokni Aida Talebi 《Open Journal of Civil Engineering》 2016年第2期163-178,共16页
A series of numerical calculations have been performed to investigate the effect of soil improvement on seismic site response. Seismic site response analyses were also performed using data collected from a study area ... A series of numerical calculations have been performed to investigate the effect of soil improvement on seismic site response. Seismic site response analyses were also performed using data collected from a study area in Babol city. The improved site is a composite ground and has more or less different mechanical properties than the natural ground. In this research, the influence of the elastic modulus of the pile, the pile distance ratio, ground motion input, distance to fault rupture, and PGA of the earthquakes on seismic response characteristics are especially investigated. The results reveal that the values of the PGA and amplification factor on the surface of the natural and improved grounds depend strongly on the fundamental period of the site, the predominant period, and the intensity of the ground motion input. The acceleration response spectra also are affected by the characteristics of ground motion input and soil layers. Changing the pile distance ratio doesn’t have a significant effect on the seismic response of the site. 展开更多
关键词 Seismic Site Response Amplification Factor acceleration Response Spectra Soil Improvement PILE Numerical Analysis Babol
下载PDF
Elastic and Inelastic Response of Structural Systems in Seismic Pounding
15
作者 N. U. Mate S. V. Bakre +1 位作者 O. R. Jaiswal K. K. Sayyad 《Open Journal of Civil Engineering》 2016年第1期50-73,共24页
The present paper addresses the comparative study of three adjacent single-degree-of freedom structures for elastic and inelastic system with and without pounding under seismic excitations. For the gap between three a... The present paper addresses the comparative study of three adjacent single-degree-of freedom structures for elastic and inelastic system with and without pounding under seismic excitations. For the gap between three adjacent structures, the simulation is done by using linear spring element without damping. The entire numerical simulation is done in time domain by considering the inputs of four real ground motions. The results of the study show that the response of elastic system is much different to that of response of inelastic system in the absence and presence of pounding, especially in lighter or more flexible structures. Elastic structures show much severe pounding response than inelastic structures. Modeling of colliding structures behaving inelastically is really needed in order to obtain the accurate structural pounding involved response under seismic excitation. 展开更多
关键词 Seismic Pounding Gap Element MDOF Elastic and Inelastic Stick System Time History Analysis Spectral acceleration Response
下载PDF
Modeling and parameter identification of linear time-varying systems based on adaptive chirplet transform under random excitation
16
作者 Jie ZHANG Zhiyu SHI Lirong LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第4期56-66,共11页
In this paper,a time–frequency algorithm based on adaptive chirplet transform for parameter modeling and identification of Linear Time-Varying(LTV)systems under random excitation is presented.It is assumed that the s... In this paper,a time–frequency algorithm based on adaptive chirplet transform for parameter modeling and identification of Linear Time-Varying(LTV)systems under random excitation is presented.It is assumed that the solution of responses of LTV structures is expressed as the sum of multicomponent Linear Frequency Modulated(LFM)signals in a short-time.Then the measured acceleration response is used to perform the adaptive chirplet transform,in which an integral algorithm is employed to reconstruct the velocity and displacement responses.The vibration differential equation with time-varying coefficients is transformed into a simple linear equation.Furthermore,for systems under random excitation,the input–output relation based on correlation function is also derived to estimate the parameters including physicals parameters and instantaneous modal parameters.The full procedure of the method is presented and validated by using simulated responses.The results show that the presented method is accurate and robust for various LTV systems under random excitation. 展开更多
关键词 acceleration response Chirplet transform LTV systems Random excitation System parameter identification
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部